

# Online Quality Control

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering
University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6161

Modern Manufacturing System Engineering

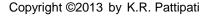
# Quality Control and Online Improvement

Offline design for quality: obtain best design based on the knowledge about the product and process before production

Goal of on-line control: monitor manufacturing process for conformance to design specifications and tune parameters for further improvement

#### Outline of topics

- 1. Statistical Process Control (SPC) general methodology
- 2. Control Charts
- 3. Process Capability Analysis (use of control charts for ...)
- 4. Evolutionary Operation (EVOP) on-line use of experiments
- 5. Quality and Manufacturing Operations





# **Process Improvement via SPC**

- SPC provides information on
  - Statistical control of a process (Is the variation in process merely natural/unavoidable?)
  - Capability of process (How capable is the process in meeting specifications? How bad is the natural variability?)
- Recommended courses of action:

Is the process capable?

|                     |     | Yes | No                                                                |
|---------------------|-----|-----|-------------------------------------------------------------------|
| Is the              | Yes | SPC | SPC and/or EVOP Experimental design Change Process                |
| process in control? | No  | SPC | SPC Experimental design Investigate specifications Change process |



### **The Control Chart**

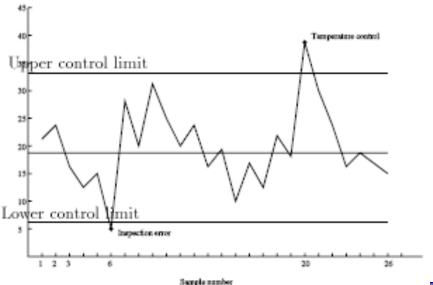
#### Used to

Detect out-of-control change in a process (primary goal)

Estimate process parameters – determine process capability

Obtain information for improving process and reducing variability

#### A typical control chart





### The Control Chart: General Model

- Called Shewhart Control Charts [Dr. Walter A. Shewhart (1930's)]
- Plot w: a sample statistic that measures a quality characteristic
  - $\mu_w$ : mean of w
  - $\sigma_w$ : standard deviation of w

UCL=
$$\mu_w + k\sigma_w$$
  
Center line= $\mu_w$   
LCL= $\mu_w - k\sigma_w$ 

- k: "distance" of control limits from center line in units of standard deviation; typically k = 3 (3σ control limits→99.73% confidence for Normal distribution)
- Control chart essentially a repeated test of **null hypothesis** that the process is in control (hypothesis that *w* is distributed with mean and standard deviation corresponding to in-control state)



# **Computing Control Chart Parameters**

- Problem: control diameter of hole in steel castings
  - desired nominal diameter of  $\mu = 10 \text{ mm}$
  - observations have shown  $\sigma = 0.025$  mm



Process: every 2 hours a casting is randomly selected, so

$$\sigma_{\bar{x}} = \sigma / \sqrt{n} = 0.025 / \sqrt{1} = 0.025$$

$$LCL = \mu - 3\sigma_{\bar{x}} = 10 - 3(0.025) = 9.925$$

$$UCL = \mu + 3\sigma_{\bar{x}} = 10 + 3(0.025) = 10.075$$

Note: variability would be reduced by taking n>1, due to pooling.



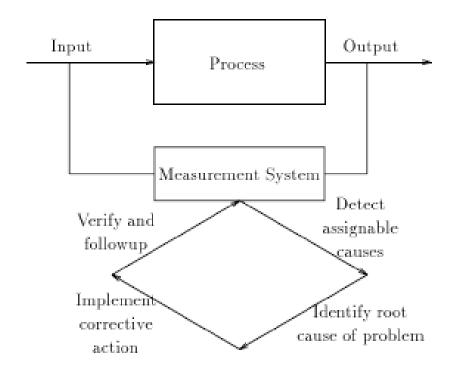
# **Control Chart Patterns**

| Pattern | Description       | Possible Causes                                                             |
|---------|-------------------|-----------------------------------------------------------------------------|
|         | Normal            | Random Variation                                                            |
|         | Lack of Stability | Assignable (or special) causes (e.g., tool, material, operator, overcontrol |
|         | Cumulative trend  | Tool Wear                                                                   |
|         | Cyclical          | Different work shifts, voltage fluctuations, seasonal effects               |



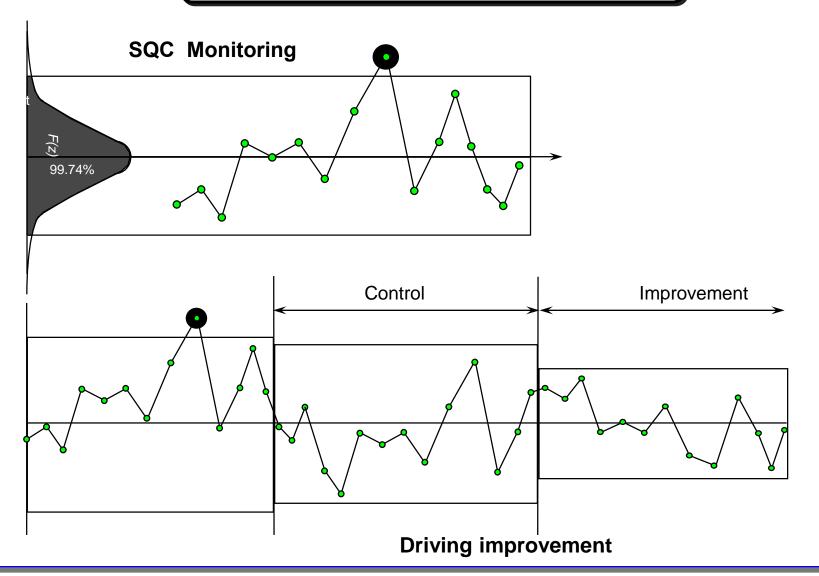
## Improvement via Control Charts

- Most processes do not operate in statistical control => routine use of control chart can identify assignable causes
- Control chart can only detect assignable causes: management, operator, and engineering action necessary to eliminate the causes => process *improved* by reducing variability





# **Continuous Improvement**





# **Utility of Control Charts**

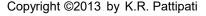
A technique for improving productivity – reduce scrap/rework

Defect prevention—"do it right the first time"

Prevent unnecessary adjustments in response to background noise (do not over-react to possibly natural variation)

Provide diagnostic information

Provide information about process capability — useful for product and process designers (how much really is the natural variability?)





# **Example Uses of Control Charts**

#### **Product Quality**

- Dimensions and other physical attributes
- Fraction nonconforming
- Range of attributes (for monitoring variability)

#### Times

- Process times
- Repair times

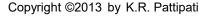
#### Other Non-Quality Applications

- Tracking throughput
- Due date quoting



# **Control Charts: Design Issues**

- Choice of control limits: based on risk (probability) of making an error
  - Type I error: point falls outside control limits even when no assignable cause present (a.k.a. false alarm)
  - Type II error: point falls inside control limits when process actually out of control (a.k.a. missed detection)
- Warning limits: 2-sigma limits in addition to 3-sigma control-limits if sample-point falls outside warning limits but inside control limits take additional data to investigate state of control of process
- Allocation of sampling effort: sample size and sampling frequency
  - Larger sample size => enables detection of small shifts in process
  - Frequent sampling => early detection of out-of-control state
- Current practice: take smaller, more frequent samples
- Can also base decision on average run length (ARL)

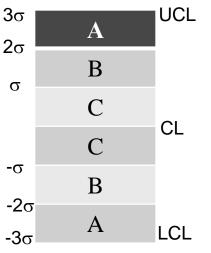




# **AT&T Rules for Control Charts**

#### Investigate if

- 2 out of 3 points in a row in zones A and above σ
- 4 out of 5 in a row in B or above
- 8 consecutive in C or beyond
- 1 point beyond A
- 6 points in a row steadily increasing
- 6 points in a row steadily decreasing
- 14 points in a row alternating up and down





# **Control Charts: Design Issues**

- ARL (Average Run Length) of control-chart: average number of points plotted before out-of-control situation is indicated
  - Shewhart control-charts (only the most recent sample statistic used to test in-control hypothesis):

$$ARL = \frac{1}{p}$$

*p* : probability that any point exceeds control limits

**Example:** 3- $\sigma$  control limits => p = 0.0027 when process in control

$$ARL = \frac{1}{0.0027} = 370$$

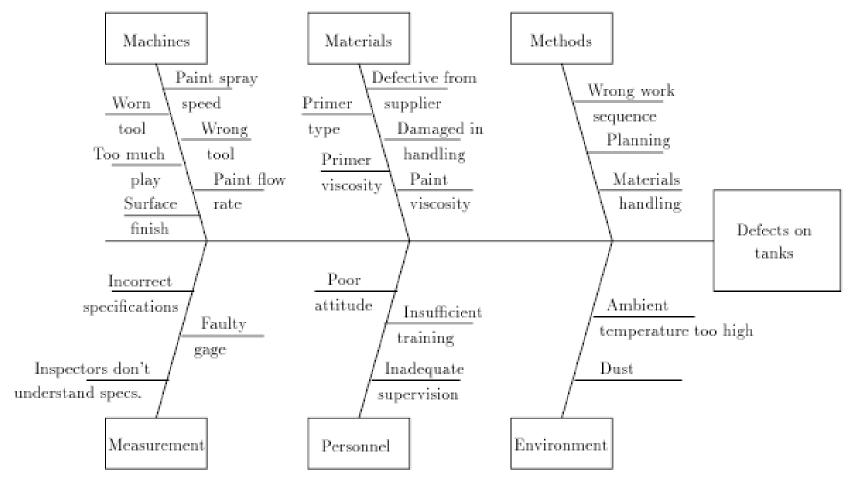
 $\Rightarrow$  370 samples plotted before false-alarm

- Mean shifts from center-line => p increases => ARL reduces (need fewer points to detect actual out-of-control)
- Rational subgroups: samples (subgroups) should be chosen so that if assignable cause(s) present, chance for differences between subgroups is maximized and chances for differences within subgroups are minimized



# **Cause and Effect Diagrams**

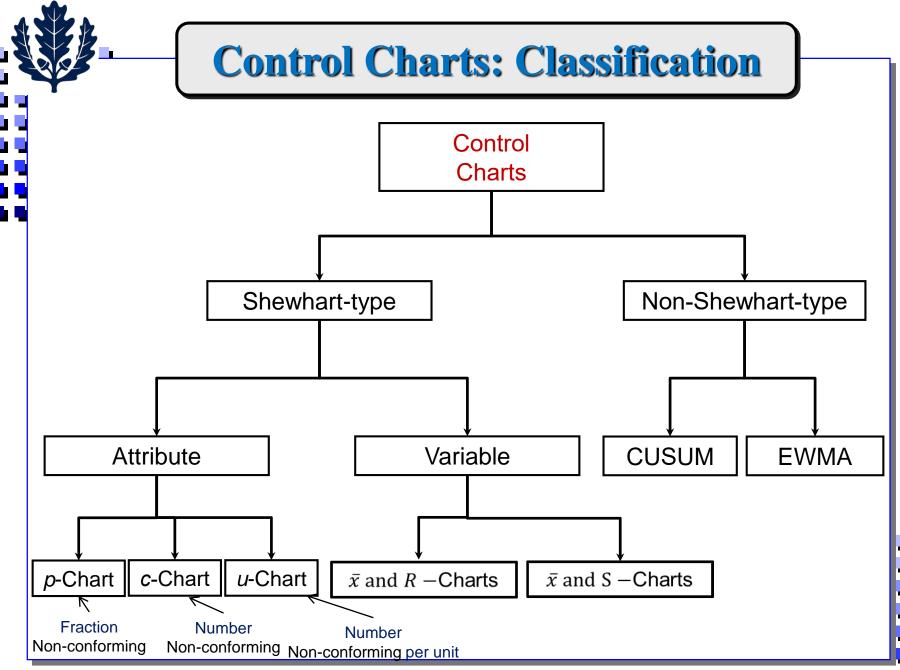
Cause and Effect Diagram: formal tool useful in unlayering potential causes of an undesirable effect (Ishikawa/Fishbone/Herringbone diagrams)





# Constructing a CE Diagram

- Start with a symptom: a condition where evidence of a problem is manifested ("observed effect")
- Ask: What are the major stimuli ("root causes") behind the observed effect?
- Process of constructing a CE diagram:
  - Start with a symptom and draw the basic shell ("fishbone")
  - Identify the major causes
  - Brainstorm for all possible causes
  - Circle the root causes, then prioritize them
  - Verify the selected major causes with further data collection





### **Control Charts for Attributes**

Attributes: quality characteristics that cannot be represented numerically

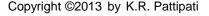
Product declared *conforming/nonconforming* to the specifications of an attribute-type quality characteristic

Three widely used control charts for attributes

p chart: plot fraction of nonconforming products

c chart: plot number of nonconformities or defects

u chart: plot number of nonconformities per unit





#### p-Chart: Control Chart for Fraction Nonconforming

Fraction nonconforming =  $\frac{\text{Number of nonconforming items in a population}}{\text{Total number of items in the population}}$ 

- Statistical principle: based on the binomial distribution
- p: probability that any unit will not conform to specifications
- X: number of units of product that are nonconforming in a random sample of *n* units
- Probability that X = x units out of n are nonconforming

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

Mean of  $x: \mu_X = np$ 

Variance of  $x: \sigma_X^2 = np(1-p)$ 



# p-Chart (cont'd)

Statistic plotted on a *p*-chart:  $\hat{p} = \frac{X}{n}$ 

Mean of 
$$\hat{p}$$
:  $\mu_{\hat{p}} = p$  (unbiased)

Variance of 
$$\hat{p}$$
:  $\sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$ 

Center line and 3-σ control-limits of a p-chart

UCL:
$$p + 3\sqrt{\frac{p(1-p)}{n}}$$

Center line:p

LCL: 
$$p-3\sqrt{\frac{p(1-p)}{n}}$$

- p is not known => estimate from m preliminary samples (typically 20-25) each of size n
  - If  $D_i$  nonconforming units in  $i^{th}$  sample,  $\hat{p}_i = \frac{D_i}{n}$ , i = 1, 2, ..., m
  - Estimate p by  $\overline{p}$ :  $\overline{p} = \frac{\sum_{i=1}^{m} D}{mn}$

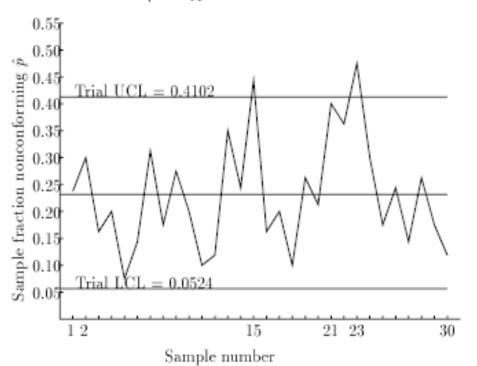


## p-Chart Example

$$\bar{p} = 347/(30)(50) = 0.2313$$

UCL = 
$$\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.2313 + 0.1789 = 0.4102$$

LCL = 
$$\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.2313 - 0.1789 = 0.0524$$



Data for trial control limits, sample size n = 50

|        | trial control minus, | <u> </u>                |
|--------|----------------------|-------------------------|
| Sample | Number of            | Sample Fraction         |
| Number | Nonconforming Units  | Nonconforming           |
| 1      | 12                   | 0.24                    |
| 2      | 15                   | 0.30                    |
| 3      | 8                    | 0.16                    |
| 4      | 10                   | 0.20                    |
| 5      | 4                    | 0.08                    |
| 6      | 7                    | 0.14                    |
| 7      | 16                   | 0.32                    |
| 8      | 9                    | 0.18                    |
| 9      | 14                   | 0.28                    |
| 10     | 10                   | 0.20                    |
| 11     | 5                    | 0.10                    |
| 12     | 6                    | 0.12                    |
| 13     | 17                   | 0.34                    |
| 14     | 12                   | 0.24                    |
| 1.5    | 22                   | 0.44                    |
| 16     | 8                    | 0.16                    |
| 17     | 10                   | 0.20                    |
| 18     | 5                    | 0.10                    |
| 19     | 13                   | 0.26                    |
| 20     | 11                   | 0.22                    |
| 21     | 20                   | 0.40                    |
| 22     | 18                   | 0.36                    |
| 23     | 24                   | 0.48                    |
| 24     | 15                   | 0.30                    |
| 2.5    | 9                    | 0.18                    |
| 26     | 12                   | 0.24                    |
| 27     | 7                    | 0.14                    |
| 28     | 13                   | 0.26                    |
| 29     | 9                    | 0.18                    |
| 30     | 6                    | 0.12                    |
|        | 347                  | $\bar{p} \equiv 0.2313$ |



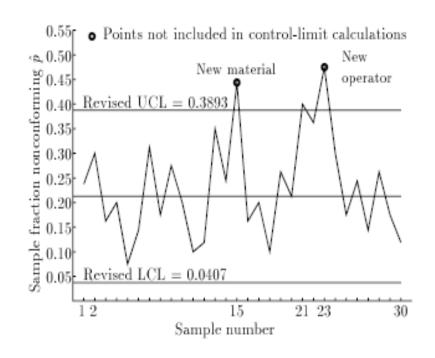
# p-Chart Example (cont'd)

- Samples 15 and 23 outside control limits; any assignable causes?
  - Sample 15: new batch of raw material introduced (possibly caused irregular production performance)
  - Sample 23: Inexperienced operator temporarily assigned
- Eliminate samples 15 and 23 and calculate new control limits

$$\bar{p} = 301/(28)(50) = 0.2150$$
  
UCL =  $\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.3893$   
LCL =  $\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.0407$ 

Sample 21 now exceeds UCL — retain if no assignable cause found

New control limits adopted for subsequent monitoring





Several defects/nonconformities possible in a single product

Number of broken rivets in an aircraft wing

Number of defective welds in 100m of oil pipeline

Assumption: occurrence of defects in samples of constant size (inspection units) modeled by Poisson distribution

x: number of nonconformities in an inspection unit

Probability of *x* nonconformities

$$p(x) = \frac{e^{-c}c^x}{x!}, x = 0,1,2,...$$

c > 0: parameter of the Poisson distribution

Mean of 
$$x = Variance of x = c$$



## c-Chart (cont'd)

- Statistic plotted on a c-chart: number of defects x
- Center line and 3-σ control-limits of a c-chart

$$UCL = c + 3\sqrt{c}$$

Center line = 
$$c$$

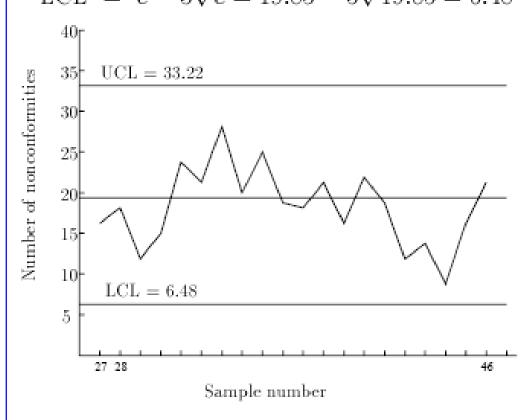
$$LCL = c - 3\sqrt{c}$$

ullet c not known => use estimate  $\bar{c}$  obtained from preliminary samples



### **c-Chart Example**

$$\bar{c} = 516/26 = 19.85$$
  
UCL =  $\bar{c} + 3\sqrt{\bar{c}} = 19.85 + 3\sqrt{19.85} = 33.22$   
LCL =  $\bar{c} - 3\sqrt{\bar{c}} = 19.85 - 3\sqrt{19.85} = 6.48$ 



Number of defects in samples of 100 printed circuit boards

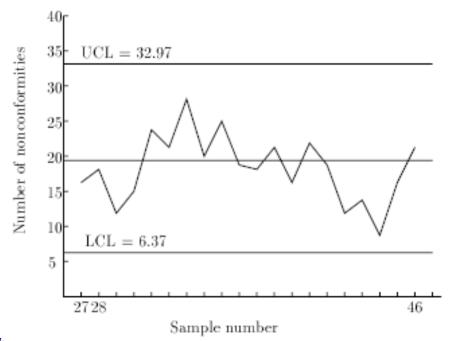
| 100 printec | l circuit boards |  |
|-------------|------------------|--|
| Sample      | Number of        |  |
| Number      | Nonconformities  |  |
| 1           | 21               |  |
| 2           | 2-4              |  |
| 3           | 16               |  |
| 4           | 12               |  |
| 5           | 1.5              |  |
| 6           | 5                |  |
| 7           | 28               |  |
| 8           | 20               |  |
| 9           | 31               |  |
| 10          | 2.5              |  |
| 11          | 20               |  |
| 12          | 2-4              |  |
| 13          | 16               |  |
| 14          | 19               |  |
| 1.5         | 10               |  |
| 16          | 17               |  |
| 17          | 13               |  |
| 18          | 2:2              |  |
| 19          | 18               |  |
| 20          | 39               |  |
| 21          | 30               |  |
| 22          | 24               |  |
| 23          | 16               |  |
| 24          | 19               |  |
| 2.5         | 17               |  |
| 26          | 1.5              |  |
|             | 516              |  |



## c-Chart Example (cont'd)

Assignable causes found for samples 6 and 20 → revise control limits

$$\bar{c} = 472/24 = 19.67$$
  
UCL =  $\bar{c} + 3\sqrt{\bar{c}} = 19.67 + 3\sqrt{19.67} = 32.97$   
LCL =  $\bar{c} - 3\sqrt{\bar{c}} = 19.67 - 3\sqrt{19.67} = 6.37$ 



# Use revised limits as standard for next period

Additional defect data for printed-circuit-boards example

| printed-circuit-boards example |                 |  |  |  |
|--------------------------------|-----------------|--|--|--|
| Sample Number of               |                 |  |  |  |
| Number                         | Nonconformities |  |  |  |
| 27                             | 16              |  |  |  |
| 28                             | 18              |  |  |  |
| 29                             | 12              |  |  |  |
| 30                             | 15              |  |  |  |
| 31                             | 24              |  |  |  |
| 32                             | 21              |  |  |  |
| 33                             | 28              |  |  |  |
| 34                             | 20              |  |  |  |
| 35                             | 25              |  |  |  |
| 36                             | 19              |  |  |  |
| 37                             | 18              |  |  |  |
| 38                             | 21              |  |  |  |
| 39                             | 16              |  |  |  |
| 40                             | 22              |  |  |  |
| 41                             | 19              |  |  |  |
| 42                             | 12              |  |  |  |
| 43                             | 14              |  |  |  |
| 44                             | 9               |  |  |  |
| 45                             | 16              |  |  |  |
| 46                             | 21              |  |  |  |



#### u-Chart: Control Chart for Average Nonconformities per Unit

Use *n* inspection units

c total nonconformities in n inspection units

Average nonconformities per inspection unit

$$u = \frac{c}{n}$$

c is Poisson random variable =>

$$UCL = \overline{u} + 3\sqrt{\frac{\overline{u}}{n}}$$

Center line =  $\bar{u}$ 

$$LCL = \overline{u} - 3\sqrt{\frac{\overline{u}}{n}}$$

 $\overline{u} \rightarrow$  estimated average nonconformities per unit from preliminary data

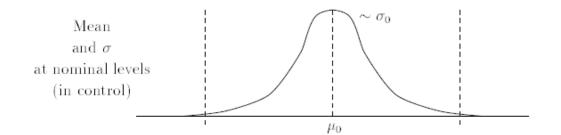


# **Control Charts for Variables**

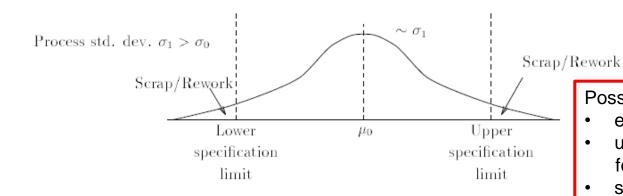
- Variable: a single measurable (quantitative) quality characteristic, e.g., a dimension, weight, or volume
- Control charts for variables provide more information about process performance than attribute control charts
- Need to control both mean and variability of the quality characteristic
  - Control chart for mean of variable:  $\bar{x}$ -chart
  - Control chart for variability: two options
    - S-chart (for standard deviation)
    - R-chart (for range) → more frequently used



# Need to Control Both Mean and Variability







Possible Cures of rework:

- eliminate rework
- use non-bottleneck for reworking
- shorten rework loop



#### $\overline{x}$ - and R-Charts

Assume quality characteristic is normally distributed as  $N(\mu, \sigma)$  Sample of size n of the quality characteristic considered:  $x_1, x_2, \dots, x_n$ 

Statistic for  $\bar{x}$  -chart: sample average

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

 $\bar{x}$  is distributed as N( $\mu$ ,  $\sigma/\sqrt{n}$ )

3- $\sigma$  control limits of  $\bar{x}$ -chart:

UCL=
$$\mu$$
+3 $\frac{\sigma}{\sqrt{n}}$ 

Center line= $\mu$ 

$$LCL = \mu - 3\frac{\sigma}{\sqrt{n}}$$

 $\mu$  and  $\sigma$  not known; estimated from preliminary samples



# $\overline{x}$ - and R-Charts: Estimation of Control Limits

- $\mu$  and  $\sigma$  not known; estimated from m preliminary samples
  - $\bar{x}_1, \bar{x}_2, ..., \bar{x}_m$ ; average of each sample of size n
  - $\bar{x}$  used as center line Estimate of  $\mu = \bar{x} = \frac{\bar{x}_1 + \bar{x}_2 + ... + \bar{x}_m}{m}$
- Usual (quadratic) method of estimating  $\sigma$ : from sample variance  $S^2$

$$\hat{\sigma}_{l} = \sqrt{S_{l}^{2}} = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_{i}^{l} - \bar{x}_{l})^{2}}; \hat{\sigma} = \sqrt{\frac{1}{m} \left[ \sum_{l=1}^{m} \hat{\sigma}_{l}^{2} + \left( \bar{x}_{l} - \bar{x} \right)^{2} \right]}$$

- Range method to estimate  $\sigma$ : almost as good as quadratic estimator for small sample sizes (n < 10); relative efficiency deteriorates as n increases
  - Small samples: typically 4, 5, or 6 due to rational subgrouping, high cost of sampling and inspection associated with variable measurements



# Range Method and R-Charts

- Range method to estimate  $\sigma$ 
  - Range of sample: difference between the largest and smallest observations  $R = x_{max} x_{min}$
  - Define relative range  $W = R/\sigma$
  - $d_2$ : mean of W tabulated values available ( $d_2 \sim 1.1$ -3.9 for  $n \sim 2$ -25)
  - Estimate  $\sigma$  by  $\widehat{\sigma} = \overline{R}/d_2$ ,  $\overline{R} = (R_1 + R_2 + ... + R_m) / m$
- R-chart: plot range values from successive samples to control variability
  - Standard deviation of R,  $\sigma_R : \sigma_R = d_3 \sigma$
  - **1**  $d_3$ : standard deviation of <u>W</u>-tables of values available ( $d_3 \sim 0.7$ -0.85)
  - Estimate of  $\sigma_R$ :  $\hat{\sigma}_R = d_3 \frac{R}{d_2}$
  - Control limits

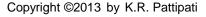
| $UCL = \overline{R} + 3d_3 \frac{\overline{R}}{d_2}$ | Center line= $\overline{R}$ | $LCL = \overline{R} - 3d_3 \frac{\overline{R}}{d_2}$ |
|------------------------------------------------------|-----------------------------|------------------------------------------------------|
|------------------------------------------------------|-----------------------------|------------------------------------------------------|

| n  | $\mathbf{d}_2$ | <b>d</b> <sub>3</sub> |
|----|----------------|-----------------------|
| 20 | 3.735          | 0.729                 |
| 25 | 3.931          | 0.708                 |



#### Control Charts for Individual Measurements

- What if n = 1? (sample for inspection is an individual unit), e.g.,
  - every unit is analyzed (e.g., use of automated inspection and measurement)
  - slow rate of production cannot allow sample sizes of n > 1 to accumulate
  - measurements made on a batch differ very little treated as one measurement (e.g., thickness at various locations of a roll of paper)
- Options
  - Control chart for individual units
  - Cumulative sum (CUSUM) or exponentially-weighted moving-average (EWMA) control charts - for detecting small shifts in process (discussed later)
- Control chart for individual units: in manner of  $\bar{x}$  and R-charts
  - Plot individual measurements, and
  - Plot variability measure estimated from moving range of two successive observations





### **Individuals Control Chart Example**

- Quality characteristic: viscosity of primer paint for aircrafts
- Control limits for MR-chart (using n = 2 for moving range)

UCL=
$$\overline{MR}(1+3\frac{d_3}{d_2}) = 0.48(3.267) = 1.57$$
  
Center line= $\overline{MR} = 0.48$   $d_3 = 0.8525$   
 $d_2 = 1.1280$ 

LCL=
$$\overline{MR}(1-3\frac{d_3}{d_2}) = 0.48(0) = 0$$

[For 
$$n = 2$$
,  $d_2 = 1.128$ ,  $d_3 = 0.853$ ,

$$1 + 3\frac{0.853}{1.128} = 1 + 2.267 = 3.267$$

Control limits for individual-measurement chart  $\overline{MR}$  0.48

UCL=
$$\overline{x} + 3\frac{MR}{d_2} = 33.52 + 3\frac{0.48}{1.128} = 34.80$$

Center line=
$$\bar{x} = 33.52$$

LCL=
$$\overline{x} - 3\frac{\overline{MR}}{d_2} = 33.52 - 3\frac{0.48}{1.128} = 32.24$$

| T 7°   | • .    | C          | • 6.     | •      | • ,   |
|--------|--------|------------|----------|--------|-------|
| V/1004 | OC1TX/ | $\alpha$ t | aircraft | nrımar | naint |
| V 15C  | OSILV  | UΙ         | aircraft | princi | pami  |
|        |        |            |          | 1      | 1     |

|   | Batch<br>Number | Viscosity <i>x</i> | Moving<br>Range <i>MR</i> |
|---|-----------------|--------------------|---------------------------|
|   | 1               | 33.75              |                           |
|   | 2               | 33.05              | 0.70                      |
| 1 | 3               | 34.00              | 0.95                      |
|   | 4               | 33.81              | 0.19                      |
|   | 5               | 33.46              | 0.35                      |
|   | 6               | 34.02              | 0.56                      |
|   | 7               | 33.68              | 0.34                      |
|   | 8               | 33.27              | 0.41                      |
|   | 9               | 33.49              | 0.22                      |
|   | 10              | 33.20              | 0.29                      |
|   | 11              | 33.62              | 0.42                      |
|   | 12              | 33.00              | 0.62                      |
|   | 13              | 33.54              | 0.54                      |
|   | 14              | 33.12              | 0.42                      |
|   | 15              | 33.84              | 0.72                      |
|   |                 | $\bar{x} = 33.52$  | $\overline{MR} = 0.48$    |



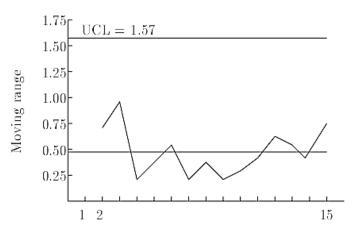
### **Individuals Control Chart Example (cont'd)**

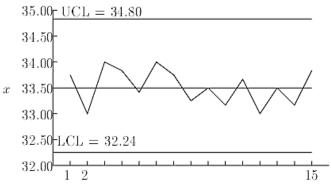
Control charts for moving range and individual observations on viscosity

Process is in control

Note on interpretation:

MR-chart is correlated x measurements are assumed uncorrelated ⇒any pattern in x-chart must be investigated





Batch number



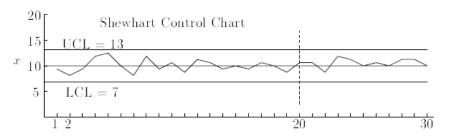
#### The Cumulative-Sum Control Chart

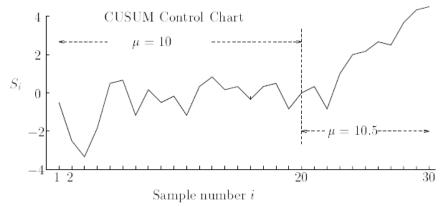
- $\bar{x}_i$ : average of  $j^{th}$  sample (or  $x_i$  if sample size n = 1)
- $\mu_0$ : target for process mean
- CUSUM chart: plot cumulative sum  $S_i$  against sample number i  $S_i = \sum_{i=1}^{i} (\overline{x}_j \mu_0) = S_{i-1} + (\overline{x}_i \mu_0)$ 
  - combine information from several samples effective for detecting small shifts
  - good for n = 1
- Trends in CUSUM chart
  - If process is in control at target value  $\mu_0$ ,  $S_i$  should fluctuate about zero (random walk with mean zero)
  - If process mean  $\mu_1 > \mu_0$ , upward drift in  $S_i$
  - If process mean  $\mu_1 < \mu_0$ , downward drift in  $S_i$
- Control limits: V-mask



# **Example: Shewhart vs. CUSUM**

| Sample i | $x_i$ | $x_{i}$ -10 | $S_{i}$ |
|----------|-------|-------------|---------|
| 1        | 9.45  | -0.55       | -0.55   |
| 2        | 7.99  | -2.01       | -2.56   |
| 3        | 9.29  | -0.71       | -3.27   |
| 4        | 11.66 | 1.66        | -1.61   |
| 5        | 12.16 | 2.16        | 0.55    |
| 6        | 10.18 | 0.18        | 0.73    |
| 7        | 8.04  | -1.96       | -1.23   |
| 8        | 11.46 | 1.46        | 0.23    |
| 9        | 9.20  | -0.80       | 0.57    |
| 10       | 10.34 | 0.34        | -0.23   |
| 11       | 9.03  | -0.97       | -1.20   |
| 12       | 11.47 | 1.47        | 0.27    |
| 13       | 10.51 | 0.51        | 0.78    |
| 14       | 9.40  | -0.60       | 0.18    |
| 15       | 10.08 | 0.08        | 0.26    |
| 16       | 9.37  | -0.63       | -0.37   |
| 17       | 10.62 | 0.62        | 0.25    |
| 18       | 10.31 | 0.31        | 0.56    |
| 19       | 8.52  | -1.48       | -0.92   |
| 20       | 10.84 | 0.84        | -0.08   |
| 21       | 10.40 | 0.40        | 0.32    |
| 22       | 8.83  | -1.17       | -0.85   |
| 23       | 11.79 | 1.79        | 0.94    |
| 24       | 11.00 | 1.00        | 1.94    |
| 25       | 10.10 | 0.10        | 2.04    |
| 26       | 10.58 | 0.58        | 2.62    |
| 27       | 9.88  | -0.12       | 2.50    |
| 28       | 11.12 | 1.12        | 3.62    |
| 29       | 10.81 | 0.81        | 4.43    |
| 30       | 10.02 | 0.02        | 4.45    |

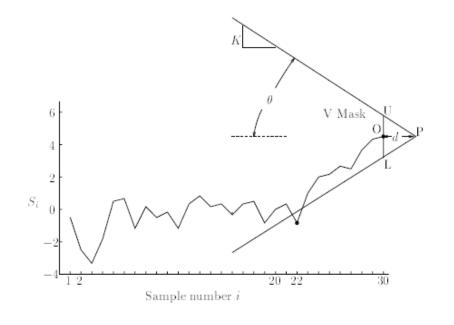






# V Mask: Limits on Slope of CUSUM Chart

- Control V mask centered at each observation; if all previous S<sub>i</sub> lie within the arms of the V mask, process is in control
- Sample 22 lies below the lower arm when mask centered at 30th sample ⇒ have detected upward shift in process mean
- Calculation of parameters d and θ of the V mask (see Montgomery)





#### **V** Mask Construction

V mask is a function of

- $-\Delta$  = magnitude of shift in  $\bar{x}$  to be detected
- $-\alpha$  = type 1 error

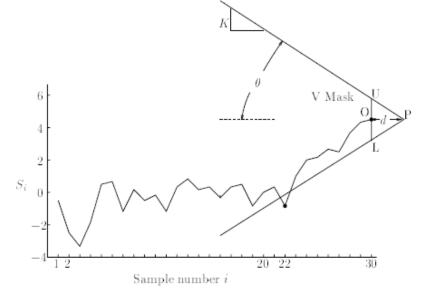
V mask construction

- Calculate

$$D = \frac{\Delta}{\sigma_{\bar{x}}} = \# \text{ of standard deviations}$$

$$- d = -\frac{2}{D^2} \ln \left( \frac{\alpha}{2} \right)$$

$$- \theta = \tan^{-1} \left( \frac{\Delta}{2K} \right) \qquad K = \frac{\text{Vertical axis scale}}{\text{Horizontal axis scale}}$$





### The EWMA Control Chart

Plot  $z_i$  versus j: exponentially weighted moving average of samples upto the jth sample

$$z_j = \lambda \overline{x}_j + (1 - \lambda) z_{j-1}, 0 < \lambda \le 1$$
  
where  $z_0 = \overline{\overline{x}}$ 

- EWMA is weighted average of current and all past observations insensitive to normality assumption (central theorem) $\rightarrow$ ideal control chart for individual observations (n = 1)
- If  $\bar{x}_i$  are independent with variance  $\sigma^2 / n$ , variance of  $z_i$  is

$$\sigma_{z_{j}}^{2} = \frac{\sigma^{2}}{n} \left( \frac{\lambda}{2 - \lambda} \right) \left[ 1 - (1 - \lambda)^{2j} \right]$$

$$\lim_{j \to \infty} \sigma_{z_{j}}^{2} = \frac{\sigma^{2}}{n} \left( \frac{\lambda}{2 - \lambda} \right)$$

$$solve Lyapunov Equation:$$

$$\sigma_{z_{j}}^{2} = (1 - \lambda)^{2} \sigma_{z_{j}-1}^{2} + \lambda^{2} \frac{\sigma^{2}}{n}$$

$$\sigma_{z_j}^2 = \left(1 - \lambda\right)^2 \sigma_{z_j - 1}^2 + \lambda^2 \frac{\sigma^2}{n}$$



## The EWMA Control Chart (cont'd)

Control limits of EWMA chart (for large sample number j)

$$UCL = \overline{x} + 3\sigma \sqrt{\frac{\lambda}{(2-\lambda)n}}$$

$$LCL = \overline{\overline{x}} - 3\sigma \sqrt{\frac{\lambda}{(2-\lambda)n}}$$

If σ unknown, must be estimated from R-chart

$$UCL = \overline{\overline{x}} + 3\frac{\overline{R}}{d_2} \sqrt{\frac{\lambda}{(2-\lambda)n}}$$

$$LCL = \overline{\overline{x}} - 3\frac{\overline{R}}{d_2} \sqrt{\frac{\lambda}{(2-\lambda)n}}$$

- Choice of  $\lambda$  and k (= 3 above) can be determined on the basis of ARL
  - Popular choices of  $\lambda$ : 0.08, 0.10, and 0.15  $\rightarrow$  use smaller  $\lambda$  to detect smaller shifts
  - Use k = 3 except when  $\lambda \le 0.10$ , use k = 2.75

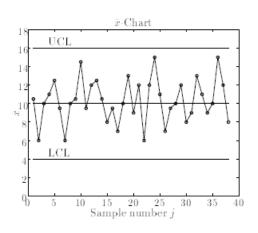


# **EWMA Example**

#### Construct EWMA chart from given $\bar{x}$ -chart

Use  $\lambda = 0.2$ 

| Sample $j$ | $\bar{x}_{j}$ | $z_j$ | LCL  | UCL   | Sample j | $\bar{x}_{j}$ | $z_j$ | LCL  | UCL   |
|------------|---------------|-------|------|-------|----------|---------------|-------|------|-------|
| 1          | 10.5          | 10.10 | 8.00 | 11.20 | 20       | 9.0           | 10.05 | 8.00 | 12.00 |
| 2          | 6.0           | 9.28  | 8.46 | 11.54 | 21       | 12.0          | 10.44 | •    | •     |
| 3          | 10.0          | 9.42  | 8.26 | 11.72 | 22       | 6.0           | 9.55  | •    | •     |
| 4          | 11.0          | 9.74  | 8.18 | 11.82 | 23       | 12.0          | 10.04 | •    | •     |
| 5          | 12.5          | 10.29 | 8.11 | 11.89 | 24       | 15.0          | 11.03 |      |       |
| 6          | 9.5           | 10.13 | 8.07 | 11.93 | 25       | 11.0          | 11.00 |      |       |
| 7          | 6.0           | 9.31  | 8.04 | 11.96 | 26       | 7.0           | 10.22 |      |       |
| 8          | 10.0          | 9.45  | 8.03 | 11.97 | 27       | 9.5           | 10.08 |      |       |
| 9          | 10.5          | 9.66  | 8.00 | 12.00 | 28       | 10.0          | 10.06 |      |       |
| 10         | 14.5          | 10.62 | •    |       | 29       | 12.0          | 10.45 |      |       |
| 11         | 9.5           | 10.40 | •    |       | 30       | 8.0           | 9.96  |      |       |
| 12         | 12.0          | 10.72 | •    |       | 31       | 9.0           | 9.77  |      |       |
| 13         | 12.5          | 11.07 |      |       | 32       | 13.0          | 10.41 |      |       |
| 14         | 10.5          | 10.96 |      |       | 33       | 11.0          | 10.53 |      |       |
| 15         | 8.0           | 10.37 |      |       | 34       | 9.0           | 10.23 |      |       |
| 16         | 9.5           | 10.19 |      |       | 35       | 10.0          | 10.18 |      |       |
| 17         | 7.0           | 9.56  |      |       | 36       | 15.0          | 11.14 |      |       |
| 18         | 10.0          | 9.64  |      |       | 37       | 12.0          | 11.32 |      |       |
| 19         | 13.0          | 10.32 |      |       | 38       | 8.0           | 10.65 |      |       |





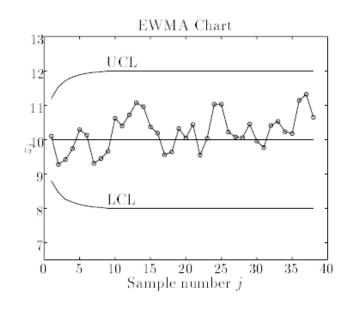
### EWMA Example (cont'd)

#### Control limits for EWMA chart

UCL=
$$\overline{\overline{x}} + 3\frac{\sigma}{\sqrt{n}}\sqrt{\frac{\lambda}{(2-\lambda)}} = 10.0 + 6.0\sqrt{\frac{0.2}{1.8}} = 12.0$$

Center line= $\overline{x} = 10.0$ 

LCL=
$$\overline{x} - 3\frac{\sigma}{\sqrt{n}}\sqrt{\frac{\lambda}{(2-\lambda)}} = 10.0 - 6.0\sqrt{\frac{0.2}{1.8}} = 8.0$$





### Capability Analysis Using a Control Chart: Example

| Sample |                                                           |     | Data |     |     | x     | R               |  |
|--------|-----------------------------------------------------------|-----|------|-----|-----|-------|-----------------|--|
| 1      | 265                                                       | 205 | 263  | 307 | 220 | 252.0 | 102             |  |
| 2      | 268                                                       | 260 | 234  | 299 | 215 | 255.2 | 84              |  |
| 3      | 197                                                       | 286 | 274  | 243 | 231 | 246.2 | 89              |  |
| 4      | 267                                                       | 281 | 265  | 214 | 318 | 269.0 | 104             |  |
| 5      | 346                                                       | 317 | 242  | 258 | 276 | 287.8 | 104             |  |
| 6      | 300                                                       | 208 | 187  | 264 | 271 | 246.0 | 113             |  |
| 7      | 280                                                       | 242 | 260  | 321 | 228 | 266.2 | 93              |  |
| 8      | 250                                                       | 299 | 258  | 267 | 293 | 273.4 | 49              |  |
| 9      | 265                                                       | 254 | 281  | 294 | 223 | 263.4 | 71              |  |
| 10     | 260                                                       | 308 | 235  | 283 | 277 | 272.6 | 73              |  |
| 11     | 200                                                       | 235 | 246  | 328 | 296 | 261.0 | 128             |  |
| 12     | 276                                                       | 264 | 269  | 235 | 290 | 266.8 | 55              |  |
| 13     | 221                                                       | 176 | 248  | 263 | 231 | 227.8 | 87              |  |
| 14     | 334                                                       | 280 | 265  | 272 | 283 | 286.8 | <sup>69</sup> ( |  |
| 15     | 265                                                       | 262 | 271  | 245 | 301 | 268.8 | 56              |  |
| 16     | 280                                                       | 274 | 253  | 287 | 258 | 270.4 | 34              |  |
| 17     | 261                                                       | 248 | 260  | 274 | 337 | 276.0 | 89              |  |
| 18     | 250                                                       | 278 | 254  | 274 | 275 | 266.2 | 28              |  |
| 19     | 278                                                       | 250 | 265  | 270 | 298 | 272.2 | 48              |  |
| 20     | 257                                                       | 210 | 280  | 269 | 251 | 253.4 | 70              |  |
|        | $\overline{\overline{x}} = 264.06 \; \overline{R} = 77.3$ |     |      |     |     |       |                 |  |

Specification on bursting strength: LSL= 200

R-chart

Center line=
$$\overline{R} = 77.3$$

$$UCL = \overline{R} \left( 1 + \frac{3d_3}{d_2} \right) = 163.49$$

$$LCL = \overline{R} \left( 1 - \frac{3d_3}{d_2} \right) = 0$$

 $\bar{x}$ -chart

Center line=
$$\overline{\overline{x}} = 264.06$$

UCL=
$$\bar{x} + 3\frac{\bar{R}}{d_2\sqrt{n}} = 308.66$$

LCL= $\bar{x} - 3\frac{\bar{R}}{d_2\sqrt{n}} = 219.46$ 

$$LCL = \overline{\overline{x}} - 3\frac{\overline{R}}{d_2\sqrt{n}} = 219.46$$



#### Capability Analysis Using a Control Chart (cont'd)

Process parameters from the control charts

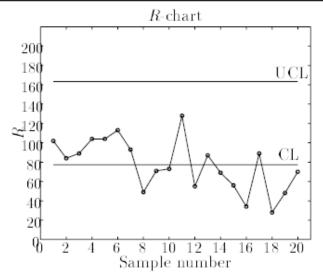
$$\hat{\mu} = \overline{\overline{x}} = 264.06$$

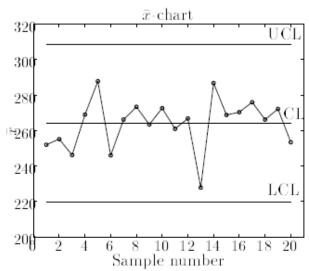
$$\hat{\sigma} = \frac{\overline{R}}{d_2} = \frac{77.3}{2.326} = 33.23$$

One-sided process capability ratio

$$CP_L = \frac{\hat{\mu} - LSL}{3\hat{\sigma}} = \frac{264.06 - 200}{3(33.23)} = 0.64$$

This CP inadequate (bottle strength is a safety factor) →process in control but operating at unacceptable level → management intervention required to improve the process







### **Evaluating Vendors using CP Analysis - 1**

- Product Spec: 50mm ± 5mm
  - USL = 55mm; LSL = 45mm
- Vendor A:  $\mu = 53$ mm;  $\sigma = 1.5$ mm

$$CP_k = \min(CP_L, CP_U) = \min(\frac{\mu - LSL}{3\sigma}, \frac{USL - \mu}{3\sigma})$$

$$= \min(\frac{2}{4.5}, \frac{8}{4.5}) = 0.44 \Rightarrow Bad$$

$$P\{45 \le y \le 55\} = 0.9082 \Rightarrow 9.18\% \ defects$$

– suppose shift mean  $\mu$  to 50mm

$$CP_k = \min(CP_L, CP_U) = \min(\frac{5}{45}, \frac{5}{45}) = 1.11$$

$$P{45 \le y \le 55} = 0.9992 \Rightarrow 8 \text{ defects in } 10,000$$

Vendor B:  $\mu$  = 52mm;  $\sigma$  = 0.6mm

$$CP_k = \min(CP_L, CP_U) = \min(\frac{\mu - LSL}{3\sigma}, \frac{USL - \mu}{3\sigma})$$

$$= \min(\frac{3}{1.8}, \frac{7}{1.8}) = 1.67 \Rightarrow Good$$

– suppose shift mean  $\mu$  to 50mm

$$CP_k = \min(CP_L, CP_U)$$

$$= \min(\frac{5}{1.8}, \frac{5}{1.8}) = 2.67 \Rightarrow Excellent$$

$$P{45 \le y \le 55} = 0.9992 \Rightarrow 2 \text{ defects in 1/billion}$$

Even if 
$$mean = 51mm$$

$$CP_k = \min((\frac{4}{1.8}, \frac{6}{1.8}) = 2.2 \Rightarrow still Excellent$$



### **Evaluating Vendors using CP Analysis - 2**

- Product Spec: 50mm ± 5mm
  - USL = 55mm; LSL = 45mm
- Vendor C:  $\mu = 50$ mm;  $\sigma = 2.2$ mm

$$CP_k = \min(CP_L, CP_U)$$
  
=  $\min(\frac{5}{6.6}, \frac{5}{6.6}) = 0.76$   
 $P\{45 \le y \le 55\} = 0.9768 \Rightarrow 2.32\% \ defects$ 

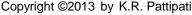
- Need to reduce  $\sigma$ 

$$\sigma = 0.833 \Rightarrow CP_k = 2$$



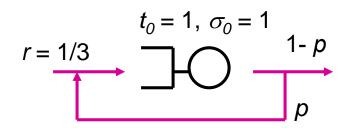
# **Quality and Logistics**

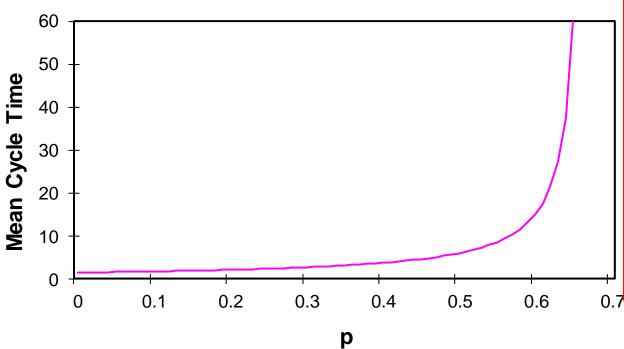
- Quality and Cost:
  - Cost increases with quality? (e.g., better materials)
  - Cost decreases with quality? (e.g., less correction cost)
  - Reality is a balance
- Quality Promotes Logistics:
  - Law: Variability degrades performance
  - Law: Congestion effects increase nonlinearly with utilization
  - Yield loss and rework are major sources of variability and lost capacity
- Logistics Promotes Quality:
  - Excess WIP obscures problems and delays/prevents diagnosis
  - Excess WIP magnifies losses
  - Excess cycle time degrades quality of service





### Rework on a Single Station





$$t_e = \frac{t_0}{1 - p}$$

$$\sigma_e^2 = \frac{\sigma_0^2}{1 - p} + \frac{pt_0^2}{(1 - p)^2}$$

$$c_e^2 = c_0^2 + p(1 - c_0^2)$$

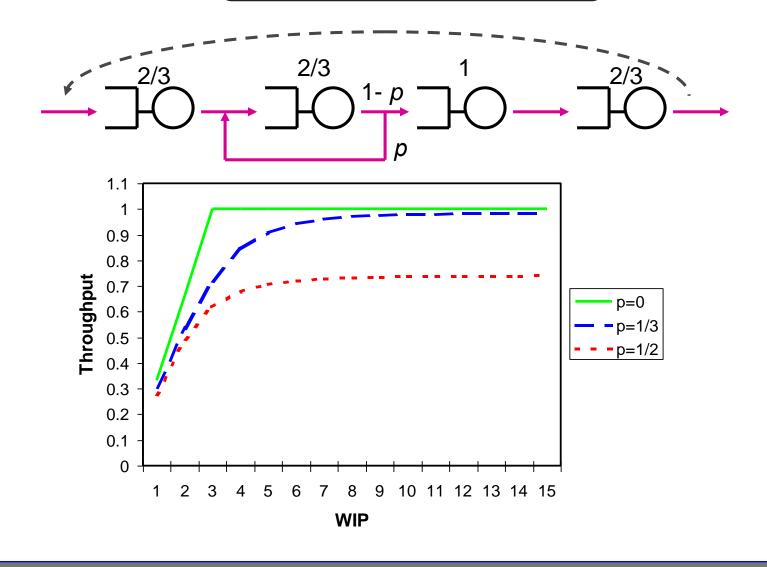
$$u = \frac{1}{3} \frac{t_0}{1 - p}$$

$$CT = \frac{t_e}{1 - u}$$

$$= \frac{t_0}{1 - p - \frac{1}{3}t_0}$$

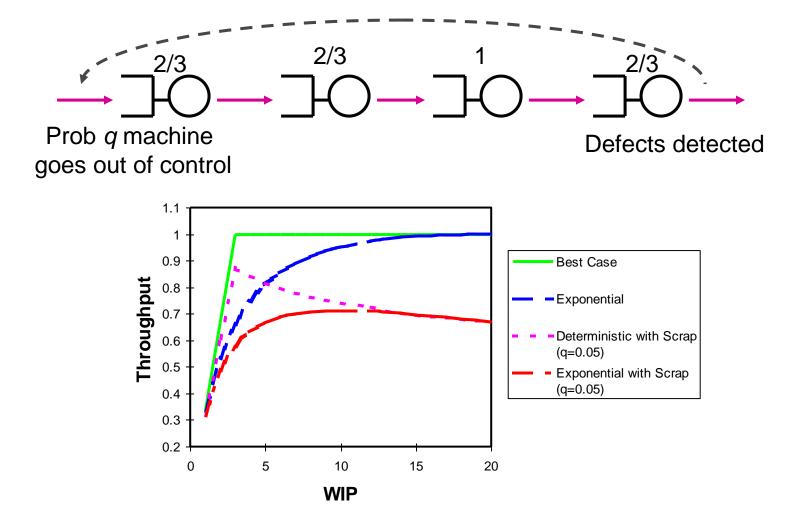


## Rework in a Line





### **Defect Detection**





# Safety and Lead Times in Assembly Systems

- Required Service:
  - Single Component: 95% service level
  - 10 Component Assembly: If each has 95% service level, then

Prob{All components arrive on time} =  $(0.95)^{10} = 0.5987$ 

so to get 95% service on the assembly we need each component to have p% service, where

$$p^{10} = 0.95$$
$$p = 0.95^{1/10} = 0.9949$$





# Safety and Lead Times in Assembly Systems

#### Consequences:

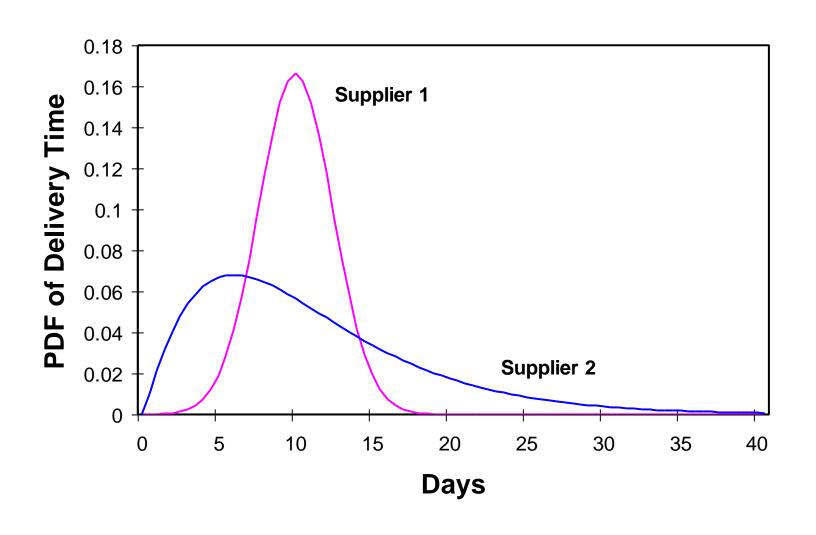
- Single Component:
  - Supplier 1: 14 day lead time
  - Supplier 2: 23 day lead time
- 10 Component Assembly:
  - Supplier 1: 16.3 day lead time
  - Supplier 2: 33.6 day lead time

Α

В

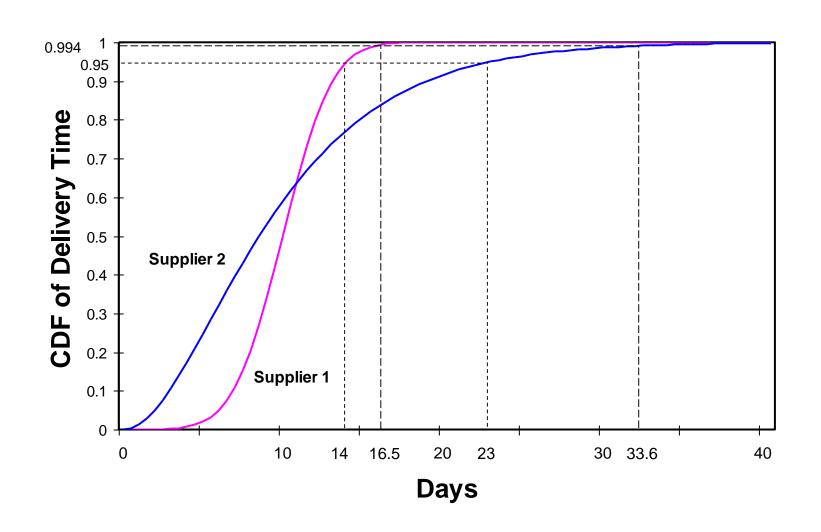


# Effect of Variability on Purchasing Lead Times





# Effect of Variability on Purchasing Lead Times





#### References

- 1. Badavas, P. C., *Real-Time Statistical Process Control*, P.T.R. Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
- 2. Kane, V., Process Capability Indices, *Journal of Quality Technology*, vol. 18, pp 41-52, January 1986.
- 3. Kaplan, G. (ed.), Manufacturing À La Carte, Making war on defects, *IEEE Spectrum*, pp 43-50, September 1993.
- 4. Montgomery, D. C., *Introduction to Statistical Quality Control*, John Wiley & Sons, New York, 1991.
- 5. Ryan, T. P., *Statistical Methods for Quality Improvement*, John Wiley & Sons, New York, 1989.
- 6. Schmidt, S. R. and Launsby, R. G., *Understanding Industrial Designed Experiments*, Air Academy Press, Colorado Springs, Third edition, 1992.

