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 Importance of reliability

 Reliability definitions

▪ Measures of reliability and availability

▪ Maintained & non-maintained systems

▪ Fault distributions

 Device Reliability

▪ Accelerated life-testing

 System Reliability Modeling

▪ Reliability block diagram (parallel, series, k-out-of-n) and reliability 
bounds

▪ Fault-tree

▪ Reliability digraph

▪ Markov chains

▪ Petri nets

 References

Overview

not discussed in this lecture

References:

• AT&T Reliability Modeling Handbook

• Trivedi

• Ross

• Shooman

• Barlow and Proschan
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 Formalized Design Techniques in Early 19th Century
■ Standardizing commonly used parts (e.g., fasteners, bearings)

■ Units of a given type tend to break or wear out in the same way

■ Correlation between application loading and useful operating life (e.g., operating 
life of a bearing inversely proportional to rotational speed of inner ring and cube of 
radial load)

■ “Reliability of a product is no better than the reliability of its least reliable 
component”

 Reliability becomes an Engineering Science
■ Probability of successfully completing a prescribed mission

■ Multiple engines versus single engine air planes (between WW I and WW II)

■ Quantitative analysis techniques due to Robert Lusser and Erich Pieruschka 
(German VI missile during WW II) …. “a reliability chain is weaker than its 
weakest link”

■ Requirements for reliability became part of military procurements during late 
1950’s

 Historical Importance in Critical Applications
■ Military, aerospace, industrial, communications, patient monitors, power systems,..

 Recent Trends
■ Harsher environments, novice users, increasing repair costs, larger systems,...

The Origin and Importance of Reliability
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 Quantitative definition of reliability

■ Conditional probability that the system has survived the interval [0,t], 
given that it was operational time t =0 

 R(t) = Pr { system operates during [0,t] | system is operational at time t = 0}

 Repair cannot take place at all or  cannot take place during a mission

 Also called non-maintained systems

 Reliability in terms of lifetime distribution

■ X ~ lifetime or time to failure of a system and F is the distribution function of X

■ Reliability R(t) = Pr{ X > t} = 1 - F(t)

if f(t) is the probability density function of X,

■ Hazard rate (age-dependent failure rate, instantaneous failure rate),

Reliability Definitions -1
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 Availability

■ Measure of the degree to which an item is in an operable state when called 

upon to perform

■ Probability that the system is operational at time t

■ Availability, A(t) = Pr { system is operational at time t}

■ Repair is allowed  maintained systems

■ If repair is not allowed, A(t) = R(t)

Reliability Definitions -2
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 Maintainability

■ The degree to which an item is to be able to be restored to a specific 

operating condition
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 The exponential distribution

■ Widely used in reliability analysis of equipment beyond the infant 

mortality period

■ Constant failure rate (steady-state hazard rate)

Failure Time Distribution: Exponential
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 The lognormal distribution

■ Used to describe failure time data obtained from accelerated testing of 
devices

■ ln (failure time) is distributed normally

 pdf:

Failure Time Distribution: Lognormal
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 The Weibull distribution

■ The most widely used life distribution, especially in modeling infant mortality 

failures

■ Hazard rate varies with device age

Failure Time Distribution: Weibull

 Hazard rate of  Weibull distribution

■ a < 1  decreasing failure rate with time 
infant mortality period

■ a  1  constant failure rate with time 
exponential distribution  steady-state

■ a > 1  increasing failure rate with time 
wearout period
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 Example 1:

■ The hazard rate of a piece of equipment is constant and estimated at 325,000 FITs 

(1 FIT= 10-9 failures per hour).  

■ What is the probability that this device will first fail in the interval : (i) 0 to 6 

months of operation? (ii) 6 to 12 months of operation? (iii) 6 to 12 months if it has 

survived the first 6 months?

■ If 100 of these systems are installed in the field but are not repaired when they fail, 

how many will still be expected to be working after 12 months?

■ What is the equipment MTTF?  Assuming an average repair time of 4 hours, what 

would the steady state availability be?  how would this change if the average repair 

time were 50 hours?

 Example 2:

■ Assume the following for an integrated circuit: the steady-state hazard rate = 10 

FITs, a=0.2 and the time to reach steady-state hazard rate is 10,000 hours.  For a 

population of such devices, what percentage would be expected to fail: (i) in the 

first month of operation? (ii) in the first 6 months of operation? (iii) in the first 10 

years of operation?

Examples
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 Models of acceleration constant

■ In an accelerated life test, environmental conditions such as temperature, voltage, 

and humidity are altered to place a greater degree of stress on the device than there 

would be in actual usage. This increased level of stress is applied to accelerate 

whatever reaction is believed to lead to failure, hence the term accelerated stress 

testing

 Accelerated life model

■ Linear relationship between failure times at different sets of conditions

Device Reliability -1
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 Unreliabilities multiply for a 
parallel system  Redundancy 
improves system reliability

n

1
2 OR
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n

fail
AND

input output
1 2 3 N-1 N

 Series System

▪ Failure of any component leads to system failure

 Reliability:                       CDF of failure time:

 Reliabilities multiply for a series system  System reliability is less than that 

of the weakest link
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 Parallel (redundant) System

▪ A system failure occurs only if all components fail
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 Reliability:                       

 CDF of failure time:
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System Reliability Modeling: Reliability Block Diagrams -1
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 k-out-of-n SYSTEM

■ For system functionality, at least k out of n components must function

 Assuming identical components

● Reliability:

● CDF of failure time:

 For non-identical components

● Reliability:

● CDF of failure time:

● CDF in terms of symmetric polynomials:

System Reliability Modeling: Reliability Block Diagrams -2
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■ Fast algorithm for evaluating CDF (F(t)) for non-identical component case

■ Example:

■ PBX Example

 An operator console, system processor and memory, 20 trunks and 200 lines and station sets

 At least 18 out of 20 trunks must be working for the system to work

 2nO

System Reliability Modeling: Reliability Block Diagrams -3
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 Reliability
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System Reliability Modeling: Reliability Block Diagrams -4

 Analysis of complex reliability structures: 

■ Decomposition or factoring methods

 what if structure can not be decomposed into series, parallel, or k-out-of-n
subsystems?
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 Analysis of complex reliability structures
■ Minimal path set method 

 a path set is a continuous line drawn from the input to the output of the block 
diagram

 a minimal path set is a minimal set of components whose functioning ensures 
the functioning of the system

 key: a system will function if and only if all the components of at least one 
minimal path set are functioning

 system reliability = P{ at least one minimal path is functioning}

 example:

Minimal path sets are : {A,D}, {B,D},{B,E},{C,E}

Analysis of Complex Reliability Structures - 1
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■ Minimal cut set method

 a minimal cut set is a minimal set of components whose failure ensures the 

failure of the system

 key: a system will fail if and only if all the components of at least one minimal 

cut set are not functioning

 system reliability = Pr{ at least one component in each cut set is functioning}

 example:  

Minimal cut sets are : {A,B,C},{D,E}, {B,A,E},{B,C,D}

Analysis of Complex Reliability Structures - 2

))()()()()()()()())((1(             

))()()()()((          

}1))1)(1)(1(1))(1)(1)(1(1(             

))1)(1(1))(1)(1)(1(1Pr{(          

}1),,max(),,max(),max(),,Pr{max()(

tRtRtRtRtRtRtRtRtR

tRtRtRtRtR

ebadcb

edcba

ebadcbedcbatR

ECDAECDAB

EDEDB

sys













Copyright ©2004 by K. Pattipati 

18

■ Indicator variable, xi

■ State vector, 

■ Structure function,  (x)

 Structure functions of different types of systems

■ System Availability (Asys) and Unavailability (Usys)
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System Reliability Computation Using Structure Function -1
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 Consider a series-parallel system

Minimal path sets of the system:

311 xxA 

322 xxA 

5413 xxxA 

5424 xxxA 

}max{)( 4321 ,A,A,AAxφ 

)1)(1)(1)(1(1 5425413231 xxxxxxxxxx 

Structure function of the systemEquivalent system 

consisting of 
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input output
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simplified reliability 

expression

 Substituting  pi with exp(-li  t), system reliability at time t can be evaluated

■ Reliability of the network

Assuming exponential lifetime distribution

System Reliability Computation Using Structure Function -1
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CB A

   CBACBA   OR     OR  PrPr 

A

C

B

 Want to compute: 

 Brute force approach: 

 SDP approach: 

BAA

ABCCABCABCBACBA 

CBABAACBA 

 Reliability computation requires evaluation of a function having the form

 Can use: 1) Exhaustive enumeration

2) Sum of disjoint products (SDP) to evaluate the function

 SDP Approach

7 terms

3 terms

system in the mincutsor  minpaths ofnumber   theis     where))(Pr(
1

nA
n

i
i



 Minimal cut-set evaluation & SDP evaluation are NP-hard problems
 Reachability analysis can be used to evaluate minimal cut-sets of specified 

cardinalities

System Reliability Computation via SDP -1
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 Intelligent methods for SDP evaluation rely on

■ Ordering of minimal path sets

■ Smart inversion methods

 Some SDP evaluation methods

■ Abraham Method

 Primitive, only suitable for small networks

■ Abraham Lock Revised Method (ALR)

 Can work with networks having components of the order of 100s, around 10 

times faster than Abraham method

■ Abraham Lock Wilson Method (ALW)

 Similar to ALR; however, faster for sparsely connected networks

■ Klaus Heidtmann’s Algorithm (KDH 88)

 Employs multivariable inversion, fastest

System Reliability Computation via SDP - 2
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 When structure function is expressed in SDP form
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 MTBF, MTTF & MTTR Computation

■ Once the failure rate ( l ) is known, system reliability can be computed 

using the corresponding failure time distribution

System Reliability Computation via SDP - 3
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 Bounds based on minimal cut sets and minimal path sets

■ A = set of minimal paths

■ C = set of minimal cut sets

■ = reliability of     component (time is implicit)

Bounds on System Reliability -1
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■ Example: Corresponds to substituting reliability in the structure function
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 Key idea

Bounds on System Reliability -2
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 Bounds based on minimal paths

■ Works good when individual reliabilities are small

paths minimal

elements path minimal  

)Pr()(Pr)Pr(





 
<

A

i

R

th
i

Ai
isysji

i jiAi
i





setscut minimal

elements cut minimal

)(1)()Pr(





 
<

C

iF

FPRFFrPF

th
i

Ci
isysji

i jiCi
i

 Bounds based on minimal cuts

■ Works good when individual reliabilities are large (close to unity)
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 Failure time distributions

 System reliability modeling

 Reliability analysis of complex structures

 Reliability computation using structure functions

 Sum of disjoint product method

 Reliability bounds

Summary
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 Performability evaluation problem

 Introduce and characterize “dual” performability processes

■ Motivated from the viewpoint of instantaneous availability evaluation 
problem

■ Forward performability process

■ Performability-to-go process

■ Characterization in terms of linear hyperbolic PDEs

 Relationship with previous results

 Numerical solution of hyperbolic PDEs

 Examples

 Extensions the random reward rates

 Summary and future research issues

Overview

References:

• Meyer, 1979

• Trivedi

• Pattipati et al., 1993, 2001
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 Motivation

■ Hybrid-state systems

System Performability Evaluation Problem

Configuration 

Dynamics
Slow Time Scale 

Markov Chain

Discrete-state Process

Continuous-state Process
System in a Given 

Configuration State Fast Time Scale

■ Application

 Fault-tolerant computer systems

 Flight control systems

 Tracking maneuvering targets in clutter

 System performability evaluation problem

 Nxt ,,2,1   Set of configuration modes; N <

    



t
XtXt

t

trdYdrY

TttY

t0
or     

0);,0[over  eperformanc Cumulative




  tXtr tX t
 at time  statein  rate (reward) ePerformanc

TimeMission T

Probability distribution of the random variable     is termed performabilityTY
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 Reward rate process

■ A deterministic process in each configuration state,

Reward Rate Process

 Nxt ,,2,1 

)(tri

t
T

■ Special cases

 Constant performance rates 

 Interval availability 

 Availability 

iXrtr tii   if ,)(

states failure ofSet , if0

states loperationa ofSet   , if 1

   

  
)(

SX

SX
tr

t

t











 
 

0T

T

X

T

t T if   X S
r t   

if   X S

  
 



)(3 tr

)(2 tr

)(1 tr
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 Forward performability process

■ Cumulative performance over  

Performability Processes


t

xtt drYYt
0

             ),,0[ 


ty

tT

A sample path of  tY

 Performability-to-go process

■ Cumulative performance over the remaining mission interval [t, T )  
T

t xt dr 


Z

tz

tT

A sample path of  tZ

 Relationships: 

■ Why define the two “dual” processes? 

0Z ZYY Ttt 
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 is modeled as a finite-state, non-homogeneous Markov process

Configuration Dynamics

 tX

A sample path of  tX

tx

tT

1

2
3

0

■ Infinitesimal generator matrix        tqijt Q

 

     T
N

i
ij

ijttt

t
ij

eetQtq

t

ixjx
q

11  1      ;00

|Pr
lim

1

0

 










 


function  delta Kronecker  ij 

■ State probability vector                                           is given by         TN tttt  21   

 
          0exp    

0


 t TT dQtttQ
dt

td
    ixt ti  Pr 

• homogeneous Markov process

• non-repairable system                                          

   ConstantQtQ

   ngular Lower triatQ
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■ In fact

Primal

 

0

T

T

Evaluate  J c T

         s.t.  Q

               

 

  

 

   

 

0 0

0

T
Evaluate  J

         s.t. - Q

                T c

               



 





 







Dual

        ttt
TT

    00 

■ In addition, for changes in certain parameter 

 
 

   
0

T
TT Td tdJ dQ

t d
d d d

    
  


  

Key Idea

Reference:

Pattipati et al., IEEE Trans.

Computers, March 1993
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 Two methods of evaluating instantaneous availability

■ Traditional method (forward time method)

   SXtA T  Pr

     

 

   iXt

Si
c

cccc

TcTTA

ti

i

T
N

Si

T
i





 





 


Pr

otherwise0

states loperationa ofset   ,  if1

 21 

For evaluating A(T) for each initial state                            we must solve      ,1   ,0 NiiX 

       times    NttQt T 

■ Alternate method (backward or reverse-time method)

              TtttttiXiXSXTA
T

N

i
iit

N

i
tT   



0        ; Pr|Pr
11



 Backward differential equation for  (costate, Lagrange multipliers, dual vector)

  cTQ            ;

Instantaneous Availability Evaluation Methods - 1
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 For evaluating A(T) for each initial state

■ Need to solve              once, and compute

 Alternate method for homogeneous case

Instantaneous Availability Evaluation Methods - 2

Mission time T

must be fixed

,1   ,0 NiiX 

 Q       00 
T

TA 

  Constant QtQ

   

       iXSXiXSXtTtw

T-tξtw

ttTTii 



 0|Pr|Pr            

  Define



 Time-shift invariant

 Forward differential equation for w(t)

      cwtwQtw  0      ;

■ Evaluate A(T) via

             0 0 0 0
TT T T Q TA T Π w T Π c e Π  

■ Mission time T can vary, but still need to solve vector differential equations 

once. Do not allow re-specification of S (and hence c), however!!



Copyright ©2004 by K. Pattipati 

35

 Sensitivity analysis of A(t) w.r.t changes in Q(t) and (0)

■ Small perturbations Q(t) in Q(t) and (0) in (0) results in a 

perturbation A(t) in A(t)

Sensitivity Analysis of A(t)

 Parameter sensitivity analysis of A(t)

■ Suppose that there are m uncertain parameters 

            
T

TTT
dQTA

0

Π0Π0 

 i
m

i


1

▪ Let     iiii tQtD   /)0(     ,/

▪ Sensitivity of A(T) w.r.t.      is i  
       

0

0
T

T T T

i i

i

A T
 D d      




  




■ Need to solve forward and backward equations only once for any number 

of parameters     provided that the mission time T is fixed

 For the homogenous models, this is true even if T is varying

i
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Summary

Forward Approach Backward Approach

Time-varying model T can vary
Initial conditions can 

vary

Time-invariant model T can vary
Both T and initial 

conditions can vary

Same idea extends naturally to performability evaluation problem

Instantaneous Availability Perfromability

Forward ODE Forward PDE

Backward ODE Backward PDE

Sensitivity analysis via                                           Sensitivity analysis via 

forward and backward ODEs two PDEs

For homogeneous Markov models, both T and initial conditions can vary 

for the ODEs or PDEs 
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 is a Markov process

■ Joint distribution of            given

Forward Process

 tt yx ,

 tt yx , 0x

        ixjxyytyFtyFtyF ttijij  0|,Pr,    where,,,

■ Forward PDEs
   

          trdiagtRtQtyFtR
y

tyF

t

tyF
k

N

k 1
     where,

,,












■ Forward moment matrix

 
 









0

,
dy

y

tyF
ytM n

n

   ixjxyEtM t
n

t
ji

n  0
),(

|,

■ Forward moment recursions
 

             

     ixjxdQtM

nMtRtMntQtM
dt

tdM

t

t

o

nnn
n











 


0
0

1
1

|Prexp

1   00     with  1


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 Two state model

■ State 1: failure state;

■ State 2: operational state;

■ Failure rate:   

Example: An Unrepairable Availability Model 

up down

l

■ system is operational at t = 0

■ Performability is the same as interval availability in this case

01 r

12 r

  0tl

    
T

1,00

     

           ytdytUdyyp

ytUdyy

yy

y

y

t

t




























>

lll

l

00

0

expexp

expPr

■ Special case:   ll t

0.0

te l

1.0

t
Cumulative Performance, y

 ytUe y l

l

0.0

Cumulative Performance, y
t

 ytUe y ll

 yte t  l
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 Distribution of zt given xt

Adjoint Process

          ixzztzgtzgtzgtzg tti
T

n  |Pr,   where,,,,, 1 

■ Adjoint PDEs

 
 

 
   tzgtQ

z

tzg
tR

t

tzg
,

,,












■ Moment vector of zt

 
 

 ( )

0

,
, ( ) |n i n

n n t t

g z t
v t z dz    i.e., v t E z x i

z

 
  




■ Adjoint moment recursions

 
           1

1 01
n

n n

dv t
Q t v t n R t v t     with v T e

dt



    
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Homogeneous Case

 is a homogeneous Markov process   tx   QtQ  is a constant matrix

 The reward rates are time-independent    RtR  is a constant matrix

 Under these assumptions,            and             are both time-shift invariant, i.e.,  tt yx ,  tt zx ,

Niyixydrpixydrp
t

x

T

tT
tTx 









 








 


 1 and  0 allfor   ||
0

0


        etMtTvetyFtTyg nn    and    ,,

▪ Define         etMtmetyFtyf nn    and     ,,

▪ Make the transformations ( T-t, Z, R )  ( t,Y,R ) in adjoint equations 

 Adjoint equations reduce to forward equations

   
 

 
      (B)   1  and       (A)     ,

,,

1
1  tmRntmQ

dt

tmd
tyfQ

y

tyf
R

t

tyf

nn
n 













▪ Define     !/ ntmtz nn 

R

Q

R

Q

 
e

  001 z   00 nz

1z 1nz
nz

1m nn znm !

Cascaded structure of 

moment recursion
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 Laplace transform of mn(t): 

Relationship to Previous Results

   

 
 

   eRQs
s

n
sl

dttmesl

n

n

n
st

n

11

1

0
11

!1 

















I

▪ Can be obtained via two approaches:

i)   From the recursions of             

ii)  From the relation between          and

 tmn

 tmn  tM n

 
     T

nn
n rrrrtMn
dt

tmd
,,        where1 1

1 

▪ Iyer, Donatiello & Heidelberger’s integral form for f(y,t) is equivalent To 

expression (A)

      l ll dtryfeptryUetyf
t

ij

N

ij

j
ijii

t
i

i 








01
,,

   

 
  matrixy probabilition     transit,          

and, statein   timeholdingMean /1   , where

 i.e.,  ,  where

1

ij

in

ijijiji

PP

idiag

QP-qp







lll

l



I
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Moments of the Interval Availability Example

 l(t)  l
▪ Mean

▪ Second moment

    ll /12| 0
t

t exyE 

  ll ll /12]2|[ 0
2 tt

t etexyE  

Moments for two state example

time 

m
ea

n
 a

n
d

 m
td

. 
d

ev
 

time m
ea

n
 p

lu
s 

o
r 

m
in

u
s 

si
g

m
a 



l=0.0005/hour
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 Consider the forward PDE for F( y, t )

Numerical Solutions - 1

   
     tQtyFtR

y

tyF

t

tyF
,

,,











With typical initial conditions

F( y, 0 ) = IU(y);    F(0, t ) = 0        ( t > 0 ) U ( y )  Unit step function

▪ Write      

          ij

t

jj
)(

ijij dyUdττqy,tFtyFtyF

tyFtyFtyF

 




















t

0
j

0

1)1()1(

)2()1(

r -exp  and    ],[,

,,,

▪ The linearity of the PDE yields

   
             

     0   0,0    ,00,with   

,,
,,

)2()2(

)1()2(
)2()2(

>











ttFyF

tqDiagtQtyFtQtyFtR
y

tyF

t

tyF
jj

▪    

       

         0      0,0    , 00,h          witThen         

]}][{ of vector row  the[::,

] of vector row  the[::,

1

2

>













ttuyufutQ
y

u
tR

t

u

 tqdiagtQy,tFityf

y,tFityu

T

T
ij

)(th

T)(th
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■ Assume that R(t) and Q(t) are both continuous matrix functions so that there 

exists a unique solution u = u ( y, t) in a given interval

■ Staggered “leapfrog” finite-difference scheme

Numerical Solutions - 2

],0[],0[),(: TYty 

j-1 j j+1

m+1

m-1

m

t

y

 Approximate the derivatives by difference quotients
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• Accuracy: 

• Computational complexity:

• A necessary and sufficient condition for stability: Courant-Friedrichs-Lewy (C.F.L) condition

 22 ytO 
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 ty  and  Discretization stepsizes
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Numerical Solutions - 3

■ Implicit finite difference scheme
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 Define an augmented NJ-dimensional column vector

 Yields a sparse system of linear equations

 Solve this very large sparse systems of linear equations via a conjugate-gradient 

method

● Accuracy:

● Unconditionally stable

 A compound finite difference scheme

● Employ the explicit scheme first to initialize the iteration procedure of the implicit 

scheme at each time step

● The result of this iterative process is used by the explicit scheme at the next time step

        TkJukukutu ,,2  ,1ˆ 

 22 ytO 
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 Failure processes are modeled via Weibull distribution

■ Failure rate of each computer:

■ Failure rate of each bus:

 Coverage factors: 

 The state of the system is denoted by ( i , j )

■ i = the number of operational computers

■ j = the number of operational buses

 At least 2 computers and 1 bus should be operational  

Computer 1 Computer 2 Computer 3

Bus 1

Bus 2

A Distributed Computer System Example -1

  1)(  ptth pppp
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busesfor    and  computersfor  bp cc
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  pp cth3
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    )1(2)1(3 bbpp cthcth 

   thcth bpp  )1(3

(3,2) (3,1)

(2,1)(2,2)

F
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A Distributed Computer System Example -2

▪ Reward rates :

▪ for various values of parameter a
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 Problem formulation

Performability Model with a Random Reward Structure -1

▪ Each reward rate     is a time-independent random variable with known       

density 

▪ Assume that the Fourier transform of             w.r.t. r exists

ir

)(rp
ir

)(rp
ir

    
r r

rj
i drrpel

i



and the Laplace transform of           w.r.t.  exists)(il

    



  dlelLL iii )]([

▪ is a homogeneous continuous-time Markov process, 

i.e.,                          is a constant matrix

▪ the waiting time in each state is exponentially 

distributed with parameter

▪ The state transition matrix               is constant 

▪ Define a vector of conditional distributions 

il
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 I PQ
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▪ Assume that the double Fourier transform of             w.r.t. y and t exists tyv ,

     

t y

tjyj dydttyves ,, 
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Performability Model with a Random Reward Structure -2

▪ Performability analysis in double Fourier transform domain
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▪ Furthermore, if D is invertible,
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Deterministic

▪ Moment approximations
 Define a vector of conditional moments
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▪ The conditional moments are given by
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       where r E r E r   and E r  is the mean of reward rate {r
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Niii i ,,2,1every for  0 if ,Especially    )( l

Performability Model with a Random Reward Structure - 3

for the second moments:
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where   and  is the variance of reward rate {r



   

 



    



(iii)    For higher order moments, similar ODE exists          

➢ The system matrix is Q

➢ The forcing term involves all lower-order moments

➢ Compare the deterministic case: the forcing term for nth conditional

moment involves only the (n-1)th conditional moments  
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 Unified framework for the performability evaluation problem

■ Nonhomogeneous Markov process models of the configuration dynamics

■ Time-dependent reward rates

■ Concept of performability-to-go

■ Random reward rates

 Extensions

■ Random reward rate processes

■ Computational methods

 The method of lines: discretize the spatial (y) axis to convert the PDEs into a 

set of ODEs, then integrate these stiff ODEs

 Multi-grid methods

 Parallel algorithms for hyperbolic PDEs

 Uniformization Methods

■ Reconfiguration control 

Summary


