

Lecture 14

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

EE 336
Stochastic Models for the Analysis of Computer Systems
and Communication Networks

Reliability Analysis of Computer Systems

Overview

- □ Importance of reliability
- Reliability definitions
 - Measures of reliability and availability
 - Maintained & non-maintained systems
 - Fault distributions
- □ Device Reliability
 - Accelerated life-testing
- □ System Reliability Modeling
 - Reliability block diagram (parallel, series, k-out-of-n) and reliability bounds
 - Fault-tree
 - Reliability digraph
 - Markov chains
 - Petri nets
- □ References

not discussed in this lecture

References:

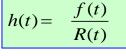
- AT&T Reliability Modeling Handbook
- Trivedi
- Ross
- Shooman
- Barlow and Proschan

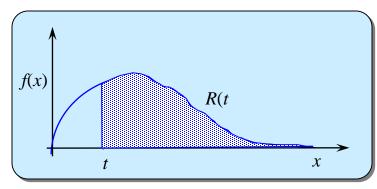
Formalized Design Techniques in Early 19th Century

- Standardizing commonly used parts (e.g., fasteners, bearings)
- Units of a given type tend to break or wear out in the same way
- Correlation between application loading and useful operating life (e.g., operating life of a bearing inversely proportional to rotational speed of inner ring and cube of radial load)
- "Reliability of a product is no better than the reliability of its least reliable component"
- □ Reliability becomes an Engineering Science
 - Probability of successfully completing a prescribed mission
 - Multiple engines versus single engine air planes (between WW I and WW II)
 - Quantitative analysis techniques due to Robert Lusser and Erich Pieruschka (German VI missile during WW II) "a reliability chain is weaker than its weakest link"
 - Requirements for reliability became part of military procurements during late 1950's
- ☐ Historical Importance in Critical Applications
 - Military, aerospace, industrial, communications, patient monitors, power systems,...
- □ Recent Trends
 - Harsher environments, novice users, increasing repair costs, larger systems,...

Reliability Definitions -1

- Quantitative definition of reliability
 - Conditional probability that the system has survived the interval [0,t], given that it was operational time t=0
 - \Rightarrow $R(t) = \text{Pr } \{ \text{ system operates during } [0,t] \mid \text{ system is operational at time } t = 0 \}$
 - ⇒ Repair cannot take place at all or cannot take place during a mission
 - **⇒** Also called non-maintained systems
- □ Reliability in terms of *lifetime distribution*
 - $X \sim \text{lifetime or time to failure of a system and } F \text{ is the distribution function of } X$
 - Reliability $R(t) = \Pr\{X > t\} = 1 F(t)$ if f(t) is the probability density function of X, $R(t) = \int_{-\infty}^{\infty} f(x) dx$
 - Hazard rate (age-dependent failure rate, instantaneous failure rate),





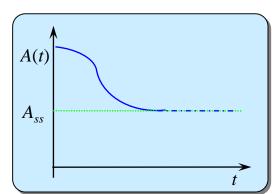


Reliability Definitions -2

Availability

- Measure of the degree to which an item is in an operable state when called upon to perform
- \blacksquare Probability that the system is operational at time t
- Availability, $A(t) = Pr \{ \text{ system is operational at time } t \}$
- Repair is allowed ⇒ maintained systems
- If repair is not allowed, A(t) = R(t)
- If $\lim_{t\to\infty} A(t)$ exists, have steady state availability, A_{ss}
 - \Rightarrow A_{ss} expected fraction of time the system is available

$$A_{ss} = \frac{\text{Uptime}}{\text{Uptime} + \text{Downtime}}$$



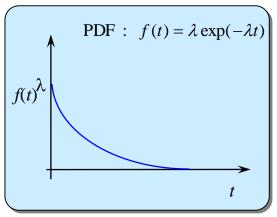
- The equation is not valid for redundant systems with multiple UP states
- Maintainability
 - The degree to which an item is to be able to be restored to a specific operating condition

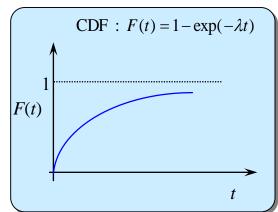
$$M(t) = \Pr(TTR \le t) = \int_{0}^{t} f_{R}(x) dx$$

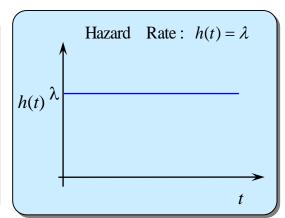
 $TTR \rightarrow Time to repair$

Failure Time Distribution: Exponential

- ☐ The exponential distribution
 - Widely used in reliability analysis of equipment beyond the infant mortality period
 - Constant failure rate (steady-state hazard rate)







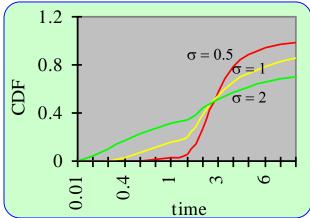
Failure Time Distribution: Lognormal

□ The lognormal distribution

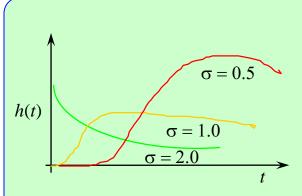
Used to describe failure time data obtained from accelerated testing of devices

■ In (failure time) is distributed normally

$$\Rightarrow pdf: f(t) = \frac{1}{\sigma t} \exp\left(-\frac{1}{2} \left[\frac{\ln(t) - \mu}{\sigma}\right]^2\right)$$



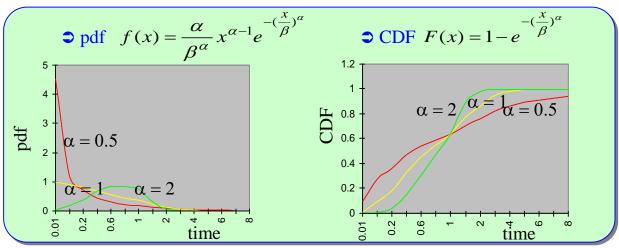
 \square Regardless of μ and σ , the hazard rate of lognormal always decreases at large times



Failure Time Distribution: Weibull

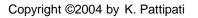
The Weibull distribution

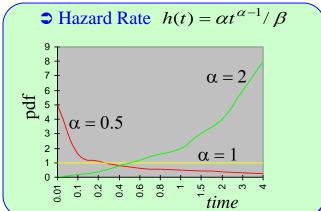
- The most widely used life distribution, especially in modeling infant mortality failures
- Hazard rate varies with device age



☐ Hazard rate of Weibull distribution

- $\alpha < 1 \Rightarrow$ decreasing failure rate with time \Rightarrow infant mortality period
- $\alpha = 1 \Rightarrow$ constant failure rate with time \Rightarrow exponential distribution \Rightarrow steady-state
- $\alpha > 1 \Rightarrow$ increasing failure rate with time \Rightarrow wearout period





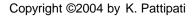
Examples

■ Example 1:

- The hazard rate of a piece of equipment is constant and estimated at 325,000 FITs (1 FIT= 10⁻⁹ failures per hour).
- What is the probability that this device will first fail in the interval: (i) 0 to 6 months of operation? (ii) 6 to 12 months of operation? (iii) 6 to 12 months if it has survived the first 6 months?
- If 100 of these systems are installed in the field but are not repaired when they fail, how many will still be expected to be working after 12 months?
- What is the equipment MTTF? Assuming an average repair time of 4 hours, what would the steady state availability be? how would this change if the average repair time were 50 hours?

■ Example 2:

Assume the following for an integrated circuit: the steady-state hazard rate = 10 FITs, α =0.2 and the time to reach steady-state hazard rate is 10,000 hours. For a population of such devices, what percentage would be expected to fail: (i) in the first month of operation? (ii) in the first 6 months of operation? (iii) in the first 10 years of operation?



Device Reliability -1

Models of acceleration constant

■ In an accelerated life test, environmental conditions such as temperature, voltage, and humidity are altered to place a greater degree of stress on the device than there would be in actual usage. This increased level of stress is applied to *accelerate* whatever reaction is believed to lead to failure, hence the term *accelerated stress testing*

□ Accelerated life model

• Linear relationship between failure times at different sets of conditions

$$t_{use} = At_{stress}$$

$$t_{use} = \text{failure time of device at use conditions}$$

$$t_{stress} = \text{failure time of that same device under stress}$$

$$A = \text{acceleration factor}$$

Implications

CDF:
$$F_u(t) = F_s(t/A)$$

pdf: $f_u(t) = \frac{1}{A} f_s(t/A)$
Reliability: $R_u(t) = R_s(t/A)$
hazard rate: $h_u(t) = \frac{1}{A} h_s(t/A)$

For Weibull:

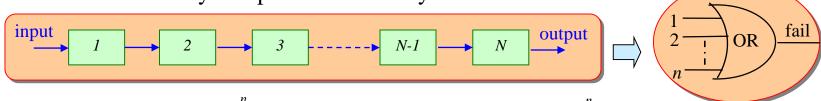
$$h_s(t) = Ah_u(At)$$

$$= A\alpha (At)^{\alpha - 1} / \beta^{\alpha}$$

$$= A^{\alpha}h_u(t)$$

Series System

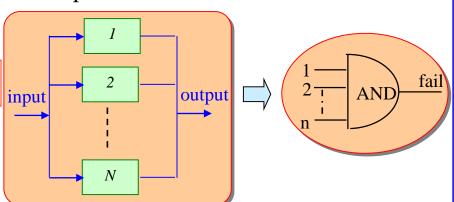
Failure of any component leads to system failure



- ⇒ Reliability: $R(t) = \prod_{i=1}^{n} R_i(t)$ ⇒ CDF of failure time: $F(t) = 1 \prod_{i=1}^{n} (1 F_i(t))$
- \Rightarrow Reliabilities multiply for a series system \Rightarrow System reliability is less than that of the weakest link

□ Parallel (redundant) System

- A system failure occurs only if all components fail
 - $\Rightarrow \text{ Reliability: } R(t) = 1 \prod_{i=1}^{n} (1 R_i(t))$
 - **○** CDF of failure time: $F(t) = \prod_{i=1}^{n} F_i(t)$
 - Unreliabilities multiply for a parallel system ⇒ Redundancy improves system reliability



k-out-of-*n* SYSTEM

- \blacksquare For system functionality, at least k out of n components must function
 - **⇒** Assuming identical components
 - Reliability: $R(t) = \sum_{i=k}^{n} {n \choose i} R(t)^i (1 R(t))^{n-i}$
 - CDF of failure time: $F(t) = \sum_{i=n-k+1}^{n} {n \choose i} F(t)^{i} (1 F(t))^{n-i} = \sum_{i=0}^{k-1} {n \choose i} F(t)^{n-i} (1 F(t))^{i}$
 - ⇒ For non-identical components
 - Reliability: $R(t) = \sum_{|I| \ge k} (\prod_{i \in I} R_i(t)) (\prod_{i \ne I} (1 R_i(t)))$

I is the subset that has at least k or (n-k+1) components

- CDF of failure time: $F(t) = \sum_{|I| \ge n-k+1} (\prod_{i \in I} F_i(t)) (\prod_{i \notin I} (1 F_i(t)))$
- CDF in terms of symmetric polynomials: $F(t) = \sum_{i=n-k+1}^{n} (-1)^{i+k-n-1} {i-1 \choose n-k} S_i(\mathbf{F})$

where
$$S_i(\mathbf{F}) = \sum_{|I|=i} \prod_{j \in I} F_j$$

■ Fast algorithm for evaluating CDF (F(t)) for non-identical component case $\rightarrow O(n^2)$

$$S_{i}(j) = symmetric \ polynomial \ of \ degree \ i \ chosen \ out \ of \ F \ with j \ elements$$

$$S_{1}(1) = F_{1}$$

$$S_{1}(j) = S_{1}(j-1) + F_{j} \ for \ j > 1$$

$$S_{j}(j) = S_{j-1}(j-1)F_{j} \ for \ j > 1$$

$$S_{i}(j) = S_{i}(j-1) + F_{j}S_{i} - U(j-1) \ for \ 1 < i < j$$

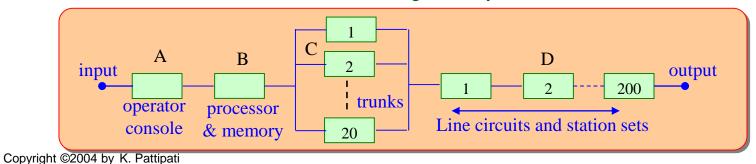
Example:

$$k = 2, \ n = 3$$

$$F(t) = S_2(F) - 2S_3(F) = F_1(t)F_2(t) + F_1(t)F_3(t) + F_2(t)F_3(t) - 2F_1(t)F_2(t)F_3(t)$$

$$MTTF = \int_0^\infty R(t)dt = \int_0^\infty (1 - F(t))dt$$

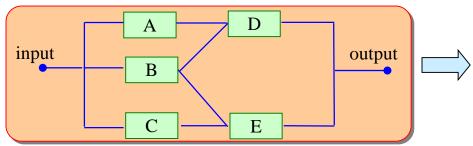
- PBX Example
 - ⇒ An operator console, system processor and memory, 20 trunks and 200 lines and station sets
 - ⇒ At least 18 out of 20 trunks must be working for the system to work



⇒ Reliability

$$\begin{split} R_{PBX}(t) &= R_A(t) R_B(t) R_C(t) R_D(t) \\ R_C(t) &= \sum_{i=18}^{20} \binom{20}{i} (R_{trunk}(t))^i (1 - R_{trunk}(t))^{20-i} \\ R_D(t) &= (R_{ls}(t))^{200}; \ R_{ls}(t) = \text{reliabilit y of a line circuit and its station} \end{split}$$

- Analysis of complex reliability structures:
 - Decomposition or factoring methods
 - \circ what if structure can not be decomposed into series, parallel, or k-out-of-n subsystems?



$$R_{sys}(t) = R_{sys}(t \mid B)R_{B}(t) + R_{sys}(t \mid \overline{B})(1 - R_{B}(t))$$

$$R_{sys}(t \mid B) = 1 - (1 - R_{D}(t))(1 - R_{E}(t))$$

$$= R_{D}(t) + R_{E}(t) - R_{D}(t)R_{E}(t)$$

$$R_{sys}(t \mid \overline{B}) = R_{A}(t)R_{D}(t) + R_{C}(t)R_{E}(t) - R_{A}(t)R_{D}(t)R_{C}(t)R_{E}(t)$$



Analysis of Complex Reliability Structures - 1

Analysis of complex reliability structures

** use the fact that $a^2 = a$, etc.

- Minimal path set method
 - ⇒ a path set is a continuous line drawn from the input to the output of the block diagram
 - a minimal path set is a minimal set of components whose functioning ensures the functioning of the system
 - ⇒ key: a system will function if and only if all the components of at least one minimal path set are functioning
 - ⇒ system reliability = P{ at least one minimal path is functioning}
 - example:

```
Minimal path sets are : {A,D}, {B,D},{B,E},{C,E}

Let a,b,c,d,e denote states components (a = 1 \Rightarrow \text{working}; a = 0 \Rightarrow \text{failed})

R_{sys} = \Pr{\max(ad,bd,be,ce) = 1}

= \Pr{1 - (1-ad)(1-bd)(1-be)(1-ce) = 1}

= \Pr{b(d+e-de) + (1-b)(ad+ce-adce) = 1}

= R_B(t)(R_D(t) + R_E(t) - R_D(t)R_E(t))

+ (1-R_B(t))(R_A(t)R_D(t) + R_C(t)R_E(t) - R_A(t)R_D(t)R_C(t)R_E(t))
```


Analysis of Complex Reliability Structures - 2

Minimal cut set method

- a minimal cut set is a minimal set of components whose failure ensures the failure of the system
- ⇒ key: a system will fail if and only if all the components of at least one minimal cut set are *not* functioning
- ⇒ system reliability = Pr{ at least one component in each cut set is functioning}
- example:

```
Minimal cut sets are : {A,B,C},{D,E}, {B,A,E},{B,C,D}

R_{sys}(t) = \Pr{\max(a,b,c) \max(d,e) \max(b,c,d) \max(a,b,e) = 1}

= \Pr{(1-(1-a)(1-b)(1-c))(1-(1-d)(1-e))}

(1-(1-b)(1-c)(1-d))(1-(1-a)(1-b)(1-e)) = 1}

= R_B(t)(R_D(t) + R_E(t) - R_D(t)R_E(t))

+ (1-R_B(t))(R_A(t)R_D(t) + R_C(t)R_E(t) - R_A(t)R_D(t)R_C(t)R_E(t))
```

System Reliability Computation Using Structure Function -1

Indicator variable, x_i

$$x_i = \begin{cases} 1, & \text{if the } i \text{ th component is functioning} \\ 0, & \text{if the } i \text{ th component has failed} \end{cases}$$

- State vector, $\mathbf{x} = (x_1, x_2, \dots, x_n)$ n = number of components
- Structure function, $\phi(x)$

$$\phi(x) = \begin{cases} 1, & \text{if the system with state vector } x \text{ is functioning} \\ 0, & \text{if the system with state vector } x \text{ has failed} \end{cases}$$

Structure functions of different types of systems

$$\phi(\mathbf{x}) = \min(x_1, \dots, x_n) = \prod_{i=1}^n x_i \qquad \leftarrow Series \ system$$

$$\phi(\mathbf{x}) = \max(x_1, \dots, x_n) = 1 - \prod_{i=1}^n (1 - x_i) \qquad \leftarrow Parallel \ system$$

$$\phi(\mathbf{x}) = \begin{cases} 1, & \text{if } \sum_{i=1}^n x_i \ge k \\ 0, & \text{if } \sum_{i=1}^n x_i < k \end{cases} \qquad \leftarrow k \ out \ of \ n \ system$$

System Availability (A_{sys}) and Unavailability (U_{sys})

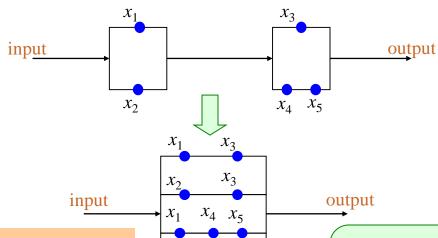
$$A_{sys} = P\{\phi(\mathbf{x}) = 1\} = E\{\phi(\mathbf{x})\}$$

$$U_{sys} = P\{\phi(\mathbf{x}) = 0\}$$

$$U_{sys} = P\{\phi(\mathbf{x}) = 0\}$$

System Reliability Computation Using Structure Function -1

Consider a series-parallel system



Minimal path sets of the system:

$$A_{1} = x_{1}x_{3}$$

$$A_{2} = x_{2}x_{3}$$

$$A_{3} = x_{1}x_{4}x_{5}$$

$$A_{4} = x_{2}x_{4}x_{5}$$

Equivalent system consisting of minimal paths

Structure function of the system

$$\varphi(x) = \max\{A_1, A_2, A_3, A_4\}$$

= 1 - (1 - $x_1 x_3$)(1 - $x_2 x_3$)(1 - $x_1 x_4 x_5$)(1 - $x_2 x_4 x_5$)

Reliability of the network

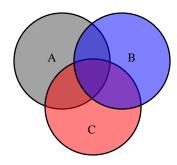
$$r(p) = 1 - E\{(1 - x_1 x_3)(1 - x_2 x_3)(1 - x_1 x_3 x_4)(1 - x_2 x_3 x_4)\}$$

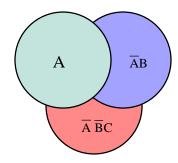
$$= E\{(x_1 x_3 + x_2 x_3 - x_1 x_2 x_3)\} = p_1 p_3 + p_2 p_3 - p_1 p_2 p_3 \Leftrightarrow \text{simplified reliability expression}$$

 \triangleright Substituting p_i with exp($-\lambda_i t$), system reliability at time t can be evaluated

Assuming exponential lifetime distribution

- Reliability computation requires evaluation of a function having the form $\Pr(\bigcup_{i=1}^{n} (A_i))$ where n is the number of minpaths or mincuts in the system
 - Can use: 1) Exhaustive enumeration
 - 2) Sum of disjoint products (SDP) to evaluate the function
- □ SDP Approach





- \square Want to compute: $Pr(A \cup B \cup C) = Pr(A \ OR \ B \ OR \ C)$
- Brute force approach: $A \cup B \cup C = A + B + C AB BC CA + ABC$ 7 terms

- □ SDP approach: $A \cup B \cup C = A + \overline{AB} + \overline{AB}C$ 3 term
- ☐ Minimal cut-set evaluation & SDP evaluation are NP-hard problems
 - Reachability analysis can be used to evaluate minimal cut-sets of specified cardinalities

System Reliability Computation via SDP - 2

- ☐ Intelligent methods for SDP evaluation rely on
 - Ordering of minimal path sets
 - Smart inversion methods
- □ Some SDP evaluation methods
 - Abraham Method
 - ⇒ Primitive, only suitable for small networks
 - Abraham Lock Revised Method (ALR)
 - ⇒ Can work with networks having components of the order of 100s, around 10 times faster than Abraham method
 - Abraham Lock Wilson Method (ALW)
 - ⇒ Similar to ALR; however, faster for sparsely connected networks
 - Klaus Heidtmann's Algorithm (KDH 88)
 - **⇒** Employs multivariable inversion, fastest

System Reliability Computation via SDP - 3

□ When structure function is expressed in SDP form

$$\begin{aligned} \boldsymbol{U}_{\mathrm{S}} &= P(\boldsymbol{\varphi} = \boldsymbol{0}) = \sum_{i=1}^{m} \prod_{j \in I_{i}} \widetilde{\boldsymbol{U}}_{j}; \quad \widetilde{\boldsymbol{U}}_{j} \in \left\{\boldsymbol{U}_{j}, \boldsymbol{A}_{j}\right\}; \quad \boldsymbol{I}_{i} = \boldsymbol{i}^{th} \text{ disjoint term} \\ \boldsymbol{v}_{\mathrm{S}} &= \sum_{i=1}^{m} \left(\prod_{j \in I_{i}} \widetilde{\boldsymbol{U}}_{j}\right) \sum_{j \in I_{i}} \left(\delta_{\widetilde{\boldsymbol{U}}_{j}\boldsymbol{U}_{j}} \boldsymbol{\mu}_{j} - \delta_{\widetilde{\boldsymbol{U}}_{j}\boldsymbol{A}_{j}} \boldsymbol{\lambda}_{j}\right) \\ \delta_{ij} &= \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \end{aligned}$$

m can be very large

□ MTBF, MTTF & MTTR Computation

$$MTBF_{sys} = \frac{1}{v_s}$$

$$MTTF_{sys} = \frac{1 - U_s}{v_s}$$

$$MTTR_{sys} = \frac{U_s^{v_s}}{v_s}$$

failure rate,
$$\lambda = \frac{1}{MTTF}$$

repair rate, $\mu = \frac{1}{MTTR}$
mean failure frequency, $v = \frac{1}{MTBF}$
stationary availability, $A = \frac{MTTF}{MTBF}$

• Once the failure rate (λ) is known, system reliability can be computed using the corresponding failure time distribution

- Bounds based on minimal cut sets and minimal path sets
 - A = set of minimal paths
 - \blacksquare C = set of minimal cut sets
 - R_i = reliability of i^{th} component (time is implicit)

$$\prod_{X \in C} \left\{ 1 - \prod_{i=1}^{n} (1 - R_i)^{1 - x_i} \right\} \le R_{sys} \le 1 - \left\{ \prod_{X \in A} (1 - \prod_{i=1}^{n} R_i^{x_i}) \right\}$$

■ Example: Corresponds to substituting reliability in the structure function

$$\{ (1 - (1 - R_A)(1 - R_B)(1 - R_C))(1 - (1 - R_D)(1 - R_E))$$

$$(1 - (1 - R_B)(1 - R_C)(1 - R_D))(1 - (1 - R_A)(1 - R_B)(1 - R_E)) \}$$

$$\leq R_{sys} \leq \{ 1 - (1 - R_A R_D)(1 - R_B R_D)(1 - R_B R_E)(1 - R_C R_E) \}$$

Bounds on System Reliability -2

■ Key idea

$$\Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} \Pr(E_i) - \sum_{i} \sum_{j < i} \Pr(E_i E_j) + \sum_{i} \sum_{j < ik < j < i} \Pr(E_i E_j E_k) - \dots + (-1)^{n+1} \Pr(E_1 E_2 \dots E_n)$$

- □ Bounds based on minimal paths
 - Works good when individual reliabilities are small

$$\sum_{i \in A} \Pr(\pi_i) - \sum_{i} \sum_{i < j} \Pr(\pi_i \pi_j) \le R_{sys} \le \sum_{i \in A} \Pr(\pi_i)$$

 $\pi_i = i^{th}$ minimal path elements

A= minimal paths

- □ Bounds based on minimal cuts
 - Works good when individual reliabilities are large (close to unity)

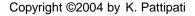
$$\underset{i \in C}{\sum} \Pr(F_i) - \underset{i}{\sum} \underset{i < j}{\sum} \Pr(F_i F_j) \leq 1 - R_{sys} \leq \underset{i \in C}{\sum} P(F_i)$$

 $F_i = i^{th}$ minimal cut elements

C= minimal cutsets

Summary

- □ Failure time distributions
- □ System reliability modeling
- □ Reliability analysis of complex structures
- □ Reliability computation using structure functions
- □ Sum of disjoint product method
- □ Reliability bounds



Performability Analysis of Fault-Tolerant Computer Systems

Overview

- □ Performability evaluation problem
- ☐ Introduce and characterize "dual" performability processes
 - Motivated from the viewpoint of *instantaneous availability* evaluation problem
 - Forward performability process
 - Performability-to-go process
 - Characterization in terms of linear hyperbolic PDEs
- □ Relationship with previous results
- □ Numerical solution of hyperbolic PDEs
- Examples
- Extensions the *random reward rates*
- □ Summary and future research issues

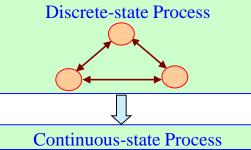
References:

- Meyer, 1979
- Trivedi
- Pattipati et al., 1993, 2001

System Performability Evaluation Problem

- Motivation
 - Hybrid-state systems

Configuration Dynamics



Slow Time Scale Markov Chain

System in a Given
Configuration State
Continuous-state

Fast Time Scale

- Application
 - **⇒** Fault-tolerant computer systems
 - **⇒** Flight control systems
 - **⇒** Tracking maneuvering targets in clutter
- □ System performability evaluation problem

 $x_t \in (1,2,\ldots,N) \to \text{Set of configuration modes}; N < \infty$

 Y_t = Cumulative performance over [0,t); $0 \le t \le T$ T = Mission Time

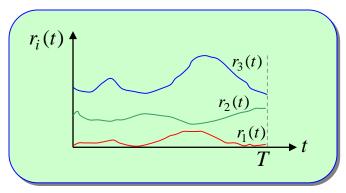
 $Y_t = \int_0^t r_{X_\tau}(\tau) d\tau$ or $dY_t = r_{X_t}(t)$ $r_{X_t}(t)$ = Performance (reward) rate in state X_t at time t

Probability distribution of the random variable Y_T is termed *performability*

Reward Rate Process

Reward rate process

■ A deterministic process in each configuration state, $x_t \in (1,2,...,N)$



Special cases

ightharpoonup Constant performance rates $ightharpoonup r_i(t) = r_i$, if $X_t = i$

 $\Rightarrow \text{ Interval availability} \rightarrow r(t) = \begin{cases} 1 & \text{if } X_t \in S, \text{ Set of operational states} \\ 0 & \text{if } X_t \in \overline{S}, \text{ Set of failure states} \end{cases}$

Availability
$$\rightarrow r_{X_T}(t) = \begin{cases} \delta(t-T) & \text{if } X_T \in S \\ 0 & \text{if } X_T \in \overline{S} \end{cases}$$

Forward performability process

Cumulative performance over $[0,t), Y_t$

$$Y_t = \int_0^t r_{x_\tau} d\tau$$

A sample path of $\{Y_t\}$

- Performability-to-go process
 - Cumulative performance over the remaining mission interval [t, T) $Z_t = \int_t^T r_{x_r} d\tau$

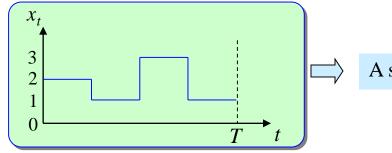
$$Z_t = \int_t^T r_{x_\tau} d\tau$$

A sample path of $\{Z_t\}$

- Relationships: $Z_t + Y_t = Y_T = Z_0$
 - Why define the two "dual" processes?

Configuration Dynamics

 \square { x_i } is modeled as a finite-state, non-homogeneous Markov process



A sample path of $\{X_t\}$

■ Infinitesimal generator matrix $Q_t = [q_{ij}(t)]$

$$q_{ij} = \lim_{\Delta t \to 0^{+}} \frac{\Pr\{x_{t+\Delta t} = j \mid x_{t} = i\} - \delta_{ij}}{\Delta t} \qquad \delta_{ij} \to \text{Kronecker delta function}$$

$$\sum_{i=1}^{N} q_{ij}(t) = 0 \Rightarrow Q(t) \underline{e} = 0; \quad \underline{e} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^{T}$$

■ State probability vector $\underline{\Pi}(t) = [\Pi_1(t) \Pi_2(t).....\Pi_N(t)]^T$ is given by

$$\frac{d\underline{\Pi}(t)}{dt} = Q^{T}(t)\underline{\Pi}(t) \implies \underline{\Pi}(t) = \exp\left[\int_{0}^{t} Q^{T}(\tau)d\tau\right]\underline{\Pi}(0) \qquad \qquad \Pi_{i}(t) \to \Pr\{x_{t} = i\}$$

- $Q(t) = Q = \text{Constant} \Rightarrow \text{homogeneous Markov process}$
- Q(t) = Lower tria ngular \Rightarrow non-repairable system

Key Idea

Primal

Evaluate $J = \underline{c}^T \underline{\Pi}(T)$

s.t.
$$\underline{\dot{\Pi}} = Q^T \underline{\Pi}$$

 $\underline{\Pi} \ge \underline{0}$

Dual

Evaluate $J = \xi^{T}(0)\underline{\Pi}(0)$

s.t.
$$-\underline{\dot{\xi}} = Q\underline{\xi}$$

 $\underline{\xi}(T) = \underline{c}$
 $\xi \ge \underline{0}$

■ In fact

$$\underline{\xi}^{T}(0)\underline{\Pi}(0) = \underline{\xi}^{T}(t)\underline{\Pi}(t) \quad \forall t$$

• In addition, for changes in certain parameter θ

$$\frac{dJ}{d\theta} = \underline{\xi}^{T}(t) \frac{d\underline{\Pi}(t)}{d\theta} + \int_{0}^{T} \underline{\xi}^{T}(\tau) \frac{dQ^{T}}{d\theta} \underline{\Pi}(\tau) d\tau$$

Reference:

Pattipati et al., IEEE Trans. Computers, March 1993

Instantaneous Availability Evaluation Methods - 1

- Two methods of evaluating instantaneous availability $A(t) = Pr\{X_T \in S\}$
 - Traditional method (forward time method)

$$A(T) = \sum_{i \in S} \Pi_i(T) = \underline{c}^T \underline{\Pi}(T)$$

$$\underline{c} = \begin{bmatrix} c_1 \ c_2 \dots c_N \end{bmatrix}^T$$

$$c_i = \begin{cases} 1 & \text{if } i \in S, \text{ set of operational states} \\ 0 & \text{otherwise} \end{cases}$$

$$\Pi_i(t) = \Pr\{X_t = i\}$$

For evaluating A(T) for each initial state $X_0 = i$, $1 \le i \le N$, we must solve

$$\underline{\dot{\Pi}}(t) = Q^{T}(t)\underline{\Pi}(t) \quad N \text{ times}$$

Alternate method (backward or reverse-time method)

$$A(T) = \sum_{i=1}^{N} \Pr\{X_T \in S \mid X_t = i\} \Pr\{X_t = i\} = \sum_{i=1}^{N} \xi_i(t) \Pi_i(t) = \underline{\xi}^T(t) \underline{\Pi}(t); \qquad 0 \le t \le T$$

 \triangleright Backward differential equation for $\underline{\xi}$ (costate, Lagrange multipliers, dual vector)

$$-\underline{\dot{\xi}} = Q\underline{\xi}$$
; $\underline{\xi}(T) = \underline{c}$

Instantaneous Availability Evaluation Methods - 2

- □ For evaluating A(T) for each initial state $X_0 = i$, $1 \le i \le N$,
 - Need to solve $-\underline{\dot{\xi}} = Q\underline{\xi}$ once, and compute $A(T) = \xi^T(0)\underline{\Pi}(0)$

Mission time *T* must be fixed

□ Alternate method for homogeneous case

$$Q(t) = Q = \text{Constant}$$
 Define $\underline{w}(t) = \underline{\xi}(T-t)$
$$w_i(t) = \xi_i(T-t) = \Pr\{X_T \in S \mid X_{T-t} = i\} = \Pr\{X_t \in S \mid X_0 = i\}$$

- **⊃** Time-shift invariant
- \triangleright Forward differential equation for $\underline{w}(t)$

$$\underline{\dot{w}}(t) = Q\underline{w}(t); \quad \underline{w}(0) = \underline{c}$$

• Evaluate A(T) via

$$A(T) = \underline{\xi}^{T}(0)\underline{\Pi}(0) = \underline{w}^{T}(T)\underline{\Pi}(0) = \underline{c}^{T}(e^{Q^{T}T})\underline{\Pi}(0)$$

■ Mission time T can vary, but still need to solve vector differential equations once. Do not allow re-specification of S (and hence \underline{c}), however!!

Sensitivity Analysis of A(t)

- □ Sensitivity analysis of A(t) w.r.t changes in Q(t) and $\underline{\Pi}(0)$
 - Small perturbations $\Delta Q(t)$ in Q(t) and $\Delta \underline{\Pi}(0)$ in $\underline{\Pi}(0)$ results in a perturbation $\Delta A(t)$ in A(t)

$$\Delta A(T) = \underline{\xi}^{T}(0)\Delta\underline{\Pi}(0) + \int_{0}^{T} \underline{\xi}^{T}(\tau)\Delta Q^{T}(\tau)\underline{\Pi}(\tau)d\tau$$

- \Box Parameter sensitivity analysis of A(t)
 - Suppose that there are m uncertain parameters $\{\theta_i\}_{i=1}^m$
 - Let $D_i(t) = \partial Q(t) / \partial \theta_i$, $\psi_i = \partial \underline{\Pi}(0) / \partial \theta_i$
 - Sensitivity of A(T) w.r.t. θ_i is $\frac{\partial A(T)}{\partial \theta_i} = \underline{\xi}^T(0) \psi_i + \int_0^T \underline{\xi}^T(\tau) D_i^T(\tau) \underline{\Pi}(\tau) d\tau$
 - Need to solve forward and backward equations only *once* for any number of parameters θ_i provided that the mission time T is fixed
 - \triangleright For the homogenous models, this is true even if T is varying

Summary

	Forward Approach	Backward Approach
Time-varying model	T can vary	Initial conditions can vary
Time-invariant model	T can vary	Both <i>T</i> and initial conditions can vary

Same idea extends naturally to performability evaluation problem

Instantaneous Availability

Perfromability

Forward ODE

Forward PDE

Backward ODE

Backward PDE

Sensitivity analysis via

Sensitivity analysis via

forward and backward ODEs

two PDEs

For homogeneous Markov models, both T and initial conditions can vary for the ODEs or PDEs

Forward Process

- $\square \{x_t, y_t\}$ is a Markov process
 - Joint distribution of $\{x_t, y_t\}$ given x_0

$$F(y,t) = [F_{ij}(y,t)], \text{ where } F_{ij}(y,t) = \Pr\{y_t \le y, x_t = j \mid x_0 = i\}$$

Forward PDEs

$$\frac{\partial F(y,t)}{\partial t} = -\frac{\partial F(y,t)}{\partial y}R(t) + F(y,t)Q(t) \text{ where } R(t) = diag\{r_k(t)\}_{k=1}^N$$

Forward moment matrix

$$M_n(t) = \int_0^\infty y^n \frac{\partial F(y,t)}{\partial y} dy$$
$$M_n^{(i,j)}(t) = E\left\{y_t^n, x_t = j \mid x_0 = i\right\}$$

Forward moment recursions

$$\frac{dM_{n+1}(t)}{dt} = M_{n+1}(t)Q(t) + (n+1)M_n(t)R(t) \quad \text{with} \quad M_n(0) = 0 \quad (n \ge 1)$$

$$M_o(t) = \exp\left[\int_0^t Q(\tau) d\tau\right] = \Pr\{x_t = j \mid x_0 = i\}$$

Example: An Unrepairable Availability Model

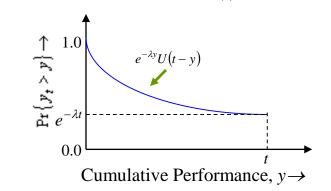
Two state model

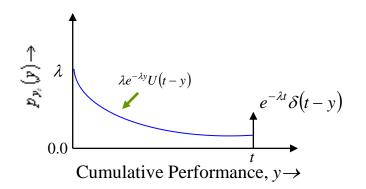
- State 1: failure state; $r_1 \equiv 0$
- State 2: operational state; $r_2 \equiv 1$
- Failure rate: $\lambda(t) \ge 0$
- $\underline{\Pi}(0) = [0,1]^T \Rightarrow \text{ system is operational at } t = 0$
- Performability is the same as interval availability in this case

$$\Pr\{y_t > y\} = \exp\left(-\int_0^y \lambda(\sigma) d\sigma\right) U(t - y)$$

$$p_{y_t}(y) = \lambda(y) \exp\left(-\int_0^y \lambda(\sigma) d\sigma\right) U(t-y) + \exp\left(-\int_0^y \lambda(\sigma) d\sigma\right) \delta(t-y)$$

■ Special case: $\lambda(t) \equiv \lambda$





up

Adjoint Process

\Box Distribution of z_t given x_t

$$g(z,t) = [g_1(z,t),\ldots,g_n(z,t)]^T$$
 where $g_i(z,t) = \Pr\{z_t \le z \mid x_t = i\}$

Adjoint PDEs

$$-\frac{\partial \underline{g}(z,t)}{\partial t} = -R(t)\frac{\partial \underline{g}(z,t)}{\partial z} + Q(t)\underline{g}(z,t)$$

• Moment vector of z_t

$$\underline{v}_{n}(t) = \int_{0}^{\infty} z^{n} \frac{\partial \underline{g}(z,t)}{\partial z} dz, \quad i.e., \ v_{n}^{(i)}(t) = E\{z_{t}^{n} \mid x_{t} = i\}$$

Adjoint moment recursions

$$-\frac{d\underline{v}_{n+1}(t)}{dt} = Q(t)\underline{v}_{n+1}(t) + (n+1)R(t)\underline{v}_{n}(t) \quad with \ \underline{v}_{0}(T) = \underline{e}$$

Homogeneous Case

- \square $\{x_t\}$ is a homogeneous Markov process $\Leftrightarrow Q(t) = Q$ is a constant matrix
- \Box The reward rates are time-independent \Leftrightarrow R(t) = R is a constant matrix
- \Box Under these assumptions, $\{x_t, y_t\}$ and $\{x_t, z_t\}$ are both time-shift invariant, i.e.,

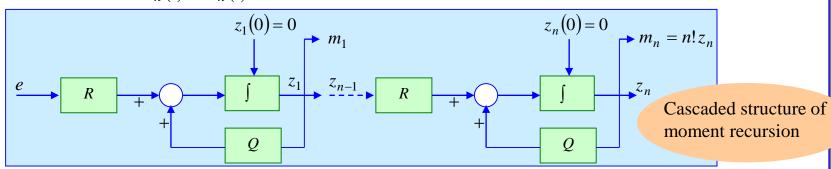
$$p\left\{\int_{T-t}^{T} r_{x_{\tau}} d\tau \le y \mid x_{T-t} = i\right\} = p\left\{\int_{0}^{t} r_{x_{\tau}} d\tau \le y \mid x_{0} = i\right\} \text{ for all } y \ge 0 \text{ and } 1 \le i \le N$$

$$\Rightarrow \underline{g}(y, T - t) = F(y, t)\underline{e} \text{ and } \underline{v}_{n}(T - t) = M_{n}(t)\underline{e}$$

- Define $\underline{f}(y,t) = F(y,t)\underline{e}$ and $\underline{m}_n(t) = M_n(t)\underline{e}$
- Make the transformations (T-t, Z, R) \Rightarrow (t, Y, R) in adjoint equations
 - Adjoint equations reduce to forward equations

$$\frac{\partial \underline{f}(y,t)}{\partial t} = -R \frac{\partial \underline{f}(y,t)}{\partial y} + Q \underline{f}(y,t) \dots \dots (A) \quad \text{and} \quad \frac{d\underline{m}_{n+1}(t)}{dt} = Q \underline{m}_{n+1}(t) + (n+1)R \underline{m}_n(t) \dots \dots (B)$$

• Define $z_n(t) = m_n(t)/n!$



Relationship to Previous Results

 \square Laplace transform of $\underline{m}_n(t)$:

$$\underline{l}_{n+1}(s) = \int_{0}^{\infty} e^{-st} \underline{m}_{n+1}(t) dt$$

$$\underline{l}_{n+1}(s) = \frac{(n+1)!}{s} \Big[(s\mathbf{I} - Q)^{-1} R \Big]^{n+1} \underline{e}$$

- Can be obtained via two approaches:
 - i) From the recursions of $\underline{m}_n(t)$
 - ii) From the relation between $\underline{m}_n(t)$ and $M_n(t)$

$$\frac{d\underline{m}_{n+1}(t)}{dt} = (n+1)M_n(t)\underline{r} \quad \text{where } \underline{r} = [r_1, \dots, r_n]^T$$

■ Iyer, Donatiello & Heidelberger's integral form for $\underline{f}(y,t)$ is equivalent To expression (A)

$$f_{i}(y,t) = e^{-\lambda t}U(y - r_{i}t) + \sum_{j=1}^{N} \lambda_{i} p_{ij} \int_{0}^{t} e^{-\lambda_{i}\tau} f_{j}(y - r_{i}\tau, t - \tau)d\tau$$

$$\text{where } \lambda_{i} \left(p_{ij} - \delta_{ij}\right) = q_{ij}, \text{ i.e., } \Lambda(P - \mathbf{I}) = Q$$

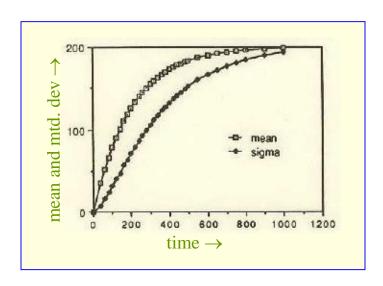
$$\text{where } \Lambda = diag(\lambda_{1}, \dots, \lambda_{n}), \quad 1/\lambda_{i} = \text{Mean holding time in state } i, \text{ and } P = \left(P_{ij}\right), \quad \text{transition probability matrix}$$

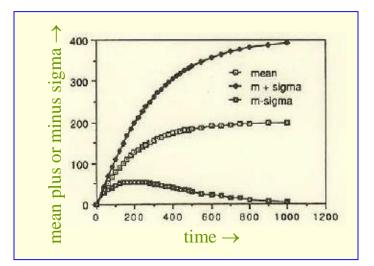
$$\Box \lambda(t) \equiv \lambda$$

$$E[y_t \mid x_0 = 2] = \left(1 - e^{-\lambda t}\right) / \lambda$$

$$E[y_t^2 | x_0 = 2] = 2(1 - e^{-\lambda t} - \lambda t e^{-\lambda t}) / \lambda$$

Moments for two state example





 $\lambda = 0.0005/hour$

Numerical Solutions - 1

Consider the forward PDE for F(y, t)

$$\frac{\partial F(y,t)}{\partial t} = -\frac{\partial F(y,t)}{\partial y} R(t) + F(y,t) Q(t)$$

With typical initial conditions

$$F(y, 0) = IU(y); \quad F(0, t) = 0 \qquad (t > 0) \qquad U(y) \rightarrow \text{Unit step function}$$

• Write $F(y,t) = F^{(1)}(y,t) + F^{(2)}(y,t)$

$$F^{(1)}(y,t) = [F_{ij}^{(1)}(y,t)] \quad \text{and} \quad F_{ij}^{(1)}(y,t) = \exp\left(\int_{0}^{t} q_{jj}(\tau)d\tau\right)U\left(y - \int_{0}^{t} r_{j}(\tau)d\tau\right)\delta_{ij}$$

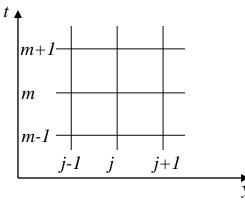
The linearity of the PDE yields

$$\frac{\partial F^{(2)}(y,t)}{\partial t} = -\frac{\partial F^{(2)}(y,t)}{\partial y} R(t) + F^{(2)}(y,t) Q(t) + F^{(1)}(y,t) \{Q(t) - Diag[q_{jj}(t)]\}$$
with $F^{(2)}(y,0) = 0$, $F^{(2)}(0,t) = 0$ $(t > 0)$

• $u(y,t) := [\text{the } i^{th} \text{ row vector of } F^{(2)}(y,t)]^T$ $f(y,t) := [\text{the } i^{th} \text{ row vector of } F^{(1)}(y,t) \{ Q(t) - diag[q_{ii}(t)] \}]^T$ Then $\frac{\partial \underline{u}}{\partial t} + R(t) \frac{\partial \underline{u}}{\partial y} = Q^T(t) \underline{u} + \underline{f}$ with $\underline{u}(y,0) = \underline{0}$, $\underline{u}(0,t) = 0$ (t > 0)

Numerical Solutions - 2

- Assume that R(t) and Q(t) are both continuous matrix functions so that there exists a unique solution u = u(y, t) in a given interval $\Omega: (y, t) \in [0, Y] \times [0, T]$
- Staggered "leapfrog" finite-difference scheme



⇒ Approximate the derivatives by difference quotients

$$\frac{1}{2\Delta t} [u(j,m+1) - u(j,m-1)] + \frac{1}{2h} R(m\Delta t) [u(j+1,m) - u(j-1,m)]$$
$$-Q^{T}(m\Delta t) u(j,m) - f(j\Delta y, m\Delta t) = 0 \quad \text{for } 1 \le j \le J-1$$

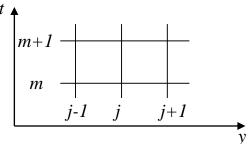
- Accuracy: $O(\Delta t^2 + \Delta y^2)$
- Computational complexity: $O(J^2M^2)$
- A necessary and sufficient condition for stability: Courant-Friedrichs-Lewy (C.F.L) condition

$$\frac{\Delta t}{\Delta y} \max \left\{ r_i(t) | i = 1, \dots, N; t \in [0, T] \right\} \le 1$$

 Δy and $\Delta t \rightarrow$ Discretization stepsizes

Numerical Solutions - 3

Implicit finite difference scheme



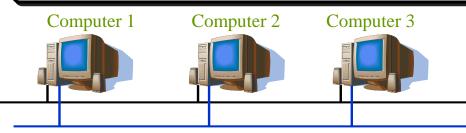
$$\frac{1}{\Delta t} [u(j,k+1) - u(j,k)] + \frac{1}{2} \{R(k\Delta t)D_0(\Delta y)u(j,k) - Q^T(k\Delta t)u(j,k) - f(j,k)\}
+ \frac{1}{2} \{R((k+1)\Delta t)D_0(\Delta y)u(j,k+1) - Q^T((k+1)\Delta t)u(j,k+1) - f(j,k+1)\} = 0$$

- \Rightarrow Define an augmented NJ-dimensional column vector $\hat{u}(t) = [u(1,k) \ u(2,k), \dots, u(J,k)]^T$
- ⇒ Yields a sparse system of linear equations
- ⇒ Solve this very large sparse systems of linear equations via a conjugate-gradient method
 - Accuracy: $O(\Delta t^2 + \Delta y^2)$
 - Unconditionally stable
- **⇒** A compound finite difference scheme
 - Employ the explicit scheme first to initialize the iteration procedure of the implicit scheme at each time step
 - The result of this iterative process is used by the explicit scheme at the next time step

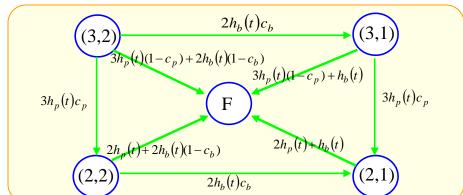
A Distributed Computer System Example -1

Bus 1

Bus 2



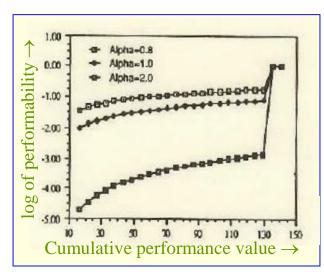
- □ Failure processes are modeled via Weibull distribution
 - Failure rate of each computer: $h_p(t) = \alpha_p \lambda_p (\lambda_p t)^{\alpha} p^{-1}$
 - Failure rate of each bus: $h_b(t) = \alpha_b \lambda_b (\lambda_b t)^{\alpha} b^{-1}$
- \square Coverage factors: c_p for computers and c_b for buses
- \Box The state of the system is denoted by (i, j)
 - i =the number of operational computers
 - j = the number of operational buses
 - **⇒** At least 2 computers and 1 bus should be operational



A Distributed Computer System Example -2

- Reward rates: $r_{(3,j)} = 2.7$, $r_{(2,j)} = 1.9$, for j = 1,2, $r_F = 0$
- $\Pr\{y_T \le y\}$ for various values of parameter α

Logarithm of $Pr\{y_T \le y\}$ for various values of the Weibull parameter α with the same mean time to failures



$$\lambda_p = 0.0005 / \text{hour}$$
 $\lambda_b = 0.0001 / \text{hour}$
 $c_p = 0.99, c_b = 0.995$
 $x_0 = (3,2), T = 50 \text{ hours}$

Performability Model with a Random Reward Structure -1

Problem formulation

- Each reward rate r_i is a time-independent random variable with known density $p_{r_i}(r)$
- Assume that the Fourier transform of $p_{r_i}(r)$ w.r.t. r exists

$$l_i(\omega) = \int_r e^{-j\omega r} p_{r_i}(r) dr$$

and the Laplace transform of $l_i(\omega)$ w.r.t. ω exists

$$L_i(\xi) = L_{\xi}[l_i(\omega)] = \int_{\omega} e^{-\xi \omega} l_i(\omega) d\omega$$

- $\{x_t \mid t > 0\}$ is a homogeneous continuous-time Markov process, i.e., $Q = \Lambda(P \mathbf{I})$ is a constant matrix
- $\Lambda = diag\{\lambda_1, \dots, \lambda_N\}$, the waiting time in each state is exponentially distributed with parameter λ_i
- The state transition matrix $P = [p_{ij}]$ is constant
- Define a vector of conditional distributions

$$v(y,t) = [v_1(y,t), \dots, v_N(y,t)]^T$$
 with entries $v_i(y,t) = \Pr(Y_t \le y \mid x_0 = i)$ $(t > 0)$

Assume that the double Fourier transform of v(y,t) w.r.t. y and t exists

$$s(\omega,\sigma) = \iint_{t} e^{-j\omega y - j\sigma t} v(y,t) dy dt$$

Performability Model with a Random Reward Structure -2

Performability analysis in double Fourier transform domain

$$s(\omega, \sigma) = \frac{1}{j\omega} (\omega \mathbf{I} - D\Lambda P)^{-1} De$$
where $D = D(\omega, \sigma) = diag \left\{ L_1 \left(\frac{\lambda_1 + j\sigma}{\omega} \right), \dots, L_N \left(\frac{\lambda_N + j\sigma}{\omega} \right) \right\}$

Furthermore, if *D* is invertible,

$$s(\omega,\sigma) = \frac{1}{j\omega}(\omega D^{-1} - \Lambda P)^{-1}e$$

$$s(\omega,\sigma) = \frac{1}{j\omega}(\sigma I + \omega R - Q)$$

Deterministic

$$s(\omega,\sigma) = \frac{1}{j\omega}(\sigma I + \omega R - Q)$$

- Moment approximations
 - Define a vector of conditional moments

$$\underline{m}_{n}(t) = [m_{1}^{n}(t), \dots, m_{N}^{n}(t)]^{T} \text{ with entries } m_{i}^{n}(t) = E[Y_{t}^{n} \mid X_{0} = i] = \int_{Y} y^{n} v_{i}(y, t) dy$$

Assumed that the Laplace transform of $m^{n}(t)$ w.r.t. t exists

$$\tilde{m}_{n}(s) = L_{t}[m_{n}(t)] = \int_{t} e^{-st} m_{n}(t) dt$$

The conditional moments are given by

(i)
$$\dot{m}_1(t) = Qm_1(t) + \overline{r}$$

where $\overline{r} = [E(r_1), \dots, E(r_N)]^T$ and $E(r_j)$ is the mean of reward rate $\{r_j\}_{j=1}^N$

Performability Model with a Random Reward Structure - 3

- (ii) Especially, if $\lambda_i \neq 0$ for every i = 1, 2, ..., Nfor the second moments: $\dot{m}_2(t) = Qm_2(t) + 2\bar{R}m_1(t) + 2\Lambda^{-1}(I - e^{-\Lambda t})\sigma^2$ where $\sigma^2 = [\sigma_1^2, ..., \sigma_N^2]^T$ and σ_j^2 is the variance of reward rate $\{r_j\}_{j=1}^N$
- (iii) For higher order moments, similar ODE exists
 - \triangleright The system matrix is Q
 - > The forcing term involves <u>all</u> lower-order moments
 - Compare the deterministic case: the forcing term for n^{th} conditional moment involves only the $(n-1)^{th}$ conditional moments

Summary

- □ Unified framework for the performability evaluation problem
 - Nonhomogeneous Markov process models of the configuration dynamics
 - Time-dependent reward rates
 - Concept of performability-to-go
 - Random reward rates
- Extensions
 - Random reward rate processes
 - Computational methods
 - **⊃** The method of lines: discretize the spatial (*y*) axis to convert the PDEs into a set of ODEs, then integrate these <u>stiff</u> ODEs
 - **⇒** Multi-grid methods
 - ⇒ Parallel algorithms for hyperbolic PDEs
 - Uniformization Methods
 - Reconfiguration control

