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& Overview |

QO Importance of reliability
O Reliability definitions

= Measures of reliability and availability
= Maintained & non-maintained systems

= Fault distributions
O Device Reliability
= Accelerated life-testing

a System Reliability Modeling
= Reliability block diagram (parallel, series, k-out-of-n) and reliability

bounds
= Fault-tree
= Reliability digraph
= Markov chains
= Petri nets

a References

Copyright ©2004 by K. Pattipati
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not discussed in this lecture

References:

* AT&T Reliability Modeling Handbook
e Trivedi

* Ross

» Shooman

« Barlow and Proschan
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o The Origin and Importance of Reliability l

0 Formalized Design Techniques in Early 19t Century

Standardizing commonly used parts (e.g., fasteners, bearings)
Units of a given type tend to break or wear out in the same way

Correlation between application loading and useful operating life (e.g., operating
life of a bearing inversely proportional to rotational speed of inner ring and cube of
radial load)

“Reliability of a product is no better than the reliability of its least reliable
component”

0 Reliability becomes an Engineering Science

Probability of successfully completing a prescribed mission
Multiple engines versus single engine air planes (between WW | and WW 11)

Quantitative analysis techniques due to Robert Lusser and Erich Pieruschka
(German VI missile during WW 1II) .... “a reliability chain is weaker than its
weakest link”

Requirements for reliability became part of military procurements during late
1950°s

0 Historical Importance in Critical Applications

Military, aerospace, industrial, communications, patient monitors, power systems,..

O Recent Trends

Harsher environments, novice users, increasing repair costs, larger systems,...

Copyright ©2004 by K. Pattipati
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: Q5 4 Reliability Definitions -1 l
04 O Quantitative definition of reliability
d = Conditional probability that the system has survived the interval [0,t],
u given that it was operational time t =0
: o R(t) = Pr { system operates during [0,t] | system is operational at time t = 0}
2 Repair cannot take place at all or cannot take place during a mission
o Also called non-maintained systems
0O Reliability in terms of lifetime distribution
m X ~ lifetime or time to failure of a system and F is the distribution function of X
= Reliability R(t) = Pr{ X>1} =1 - F(t) -
if f(t) is the probability density function of X, |[R(t)= [ f(x)dx
t f(t
» Hazard rate (age-dependent failure rate, instantaneous failure rate), | ()= %
4 N\ , , )
1 ! DFR HFR
h(t) : :
: CFR : dd
infant ¢ i
mortalityi Steady'state Ewearout j j
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a Availability

Reliability Definitions -2 l

Measure of the degree to which an item is in an operable state when called

upon to perform
Probability that the system is operational at time t

Availability, A(t) = Pr { system is operational at time t}

Repair is allowed = maintained systems
If repair is not allowed, A(t) = R(t)

If lim A(t) exists, have steady state availability, A,

t—>w

> A expected fraction of time the system is available
A = Uptime
° Uptime + Downtime

o The equation is not valid for redundant systems with multiple UP states

0 Maintainability
= The degree to which an item is to be able to be restored to a specific

operating condition t
M(t)=Pr( TTR<t)= f. (x

R

- A
A
Ass ......... —

N t )
d'd
d '
a3
TTR — Time to repair <4 'd
o
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QNS Failure Time Distribution: Exponential
o
j Q The exponential distribution
d =  Widely used in reliability analysis of equipment beyond the infant
: mortality period
O = Constant failure rate (steady-state hazard rate)
4 N\ N [ )
\  PDF: f(t)=72exp(-21) CDF : F(t) =1-exp(-At) Hazard Rate: h(t) =4
A
) A
f(t) F () h(t)
o t 4\ ¢ /L L .
od
od o
o
o d
Y
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QNS Failure Time Distribution: Lognormal
o
o . . .
" O The lognormal distribution
a = Used to describe failure time data obtained from accelerated testing of
: devices T ~
N = In (failure time) is distributed normally s
1 In(t) o 0.8 iy
f(t) = —————exp| —=
> paf: 1) ot 27 [ [ ]) a 5=2
O 0.4 1
0 +—+—+—+t++—F+++++++
o, < — ™ ©
< o
\_ © time J
0 Regardless of 1 and o, the hazard rate of lognormal always decreases at large
times - ~
A
h(t) d J
od o
o
o d
Y
Copyright ©2004 by K. Pattipati - / .
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a Failure Time Distribution: Weibull

4 R oY

Sy YO The Weibull distribution

d = The most widely used life distribution, especially in modeling infant mortality
a failures

: m Hazard rate varies with device age

u o pdf f(x)= % xa—le_(/xf)a o CDF F(x) = 1—e_(le)a A

S ~05
e Ll .
°H‘/<L‘$‘;‘&';'¢'w
U time J

_ a—1
0 Hazard rate of Weibull distribution (" 2 HazardRate h(®) =at“ /8 )

m o < 1= decreasing failure rate with time =
infant mortality period

s o =1 = constant failure rate with time =
exponential distribution = steady-state

m o> 1 = increasing failure rate with time =
wearout period

Copyright ©2004 by K. Pattipati
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Examples |

O Example 1:

The hazard rate of a piece of equipment is constant and estimated at 325,000 FITs
(1 FIT= 10 failures per hour).

What is the probability that this device will first fail in the interval : (i) 0to 6
months of operation? (ii) 6 to 12 months of operation? (iii) 6 to 12 months if it has
survived the first 6 months?

If 100 of these systems are installed in the field but are not repaired when they fail,
how many will still be expected to be working after 12 months?

What is the equipment MTTF? Assuming an average repair time of 4 hours, what
would the steady state availability be? how would this change if the average repair
time were 50 hours?

QO Example 2:

Assume the following for an integrated circuit: the steady-state hazard rate = 10
FITs, «=0.2 and the time to reach steady-state hazard rate is 10,000 hours. For a
population of such devices, what percentage would be expected to fail: (i) in the
first month of operation? (ii) in the first 6 months of operation? (iii) in the first 10
years of operation?

Copyright ©2004 by K. Pattipati
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N\ 4 Device Reliability -1 l

O Models of acceleration constant

= In an accelerated life test, environmental conditions such as temperature, voltage,
and humidity are altered to place a greater degree of stress on the device than there
would be in actual usage. This increased level of stress is applied to accelerate
whatever reaction is believed to lead to failure, hence the term accelerated stress
testing

O Accelerated life model
= Linear relationship between failure times at different sets of conditions

EF O DL L

tuse = Algpress
t, = failure time of device at use conditions
tiress = failure time of that same device under stress
A =accelerati on factor
0 Implications
CDF: F,(t)=F(t/A) For Weibull :
h, (t) = Ah, (At)
= Aa(At)*/ g*
= A%h, (t)

pdf : fu(t)z% f(t/A)
Reliability : R, (t) = R, (t/ A)

kL L

oYL L

hazard rate:h,(t) = %hs (t/A)
Copyright ©2004 by K. Pattipati
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Q Series System

= Failure of any component leads to system failure

System Reliability Modeling: Reliability Block Diagrams -1

N

input
— 1 > 2 B 3 [SE—— » N-1 |—»

ﬂput] E>

o Reliability:R(t) = rn[ Ri(t) = CDF of failure time: F(t) =1—rn[(1— F (1))
i=1 i=1

o Reliabilities multiply for a series system = System reliability is less than that

of the weakest link

Q Parallel (redundant) System

= Asystem failure occurs only if all components fail

~

> Reliability: [R(t) =1-TT(L-R; (t)) ,
i=1

1

o CDF of failure timeF(t) = rn[ F (t)
i=1

input

o Unreliabilities multiply for a
parallel system = Redundancy

improves system reliability

Copyright ©2004 by K. Pattipati
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o | System Reliability Modeling: Reliability Block Diagrams -2

@

Q k-out-of-n SYSTEM

= For system functionality, at least k out of n components must function
2 Assuming identical components

o Reliability: R(t) = ZHZL?JR(t)i(l— R(t))n—i
i=k

o« CDFoffailuretime: F(t)= > (r_]jF(t)i(l—F(t))ni =Z(.j|:('[)ni(1—F(t))i

i=n—k+1 i=0

o For non-identical components

| is the subset that has

e Reliability: R(t) = |I|Zk(HIR (t))(H (1-R;(®))) at least k or (n-k+1) components

o CDF of failuretime: F(t)= Y (HF(t))(H(l F (1))

[Izn—k+1 iel .
: . -1
o CDF interms of symmetric polynomials:  F(t) = z (=1)'tknt ! S (F)
i=n—k+1 n—k
whereS;(F) = ¥ [IF;

[l=i jel d
|
a
o
Y
Copyright ©2004 by K. Pattipati .
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o | System Reliability Modeling: Reliability Block Diagrams -3

Fast algorithm for evaluating CDF (F(t)) for non-identical component case — o(n2

S.(j) =symmetric polynomial of degree i chosen out of F withj elements
Sl(l):Fl

S;,())=S(j-D+F for j>1
S,())=S_.(J-DF, for j>1
S(N=S(j-D+FS -U(j-1) for 1l<i<]j

Example:
k=2, n=3
F(t) =S,(F)-25;(F) = F ()R, (t) + R (O F5(t) + F (D) Fs (1) —2F (D) F (D) R (1)

MTTF = [R(t)dt =] (1— F(t))dt
0 0

PBX Example
o An operator console, system processor and memory, 20 trunks and 200 lines and station sets
o At least 18 out of 20 trunks must be working for the system to work

4 R
1
. A B c D a2
Input output q'a
*— ! 1 2 [T 200 —* U
operator  processor i trunks p n

console & memory 20 Line circuits and station sets - :

\ J
Copyright ©2004 by K. I5att|pat| .
L AL LR LR



4| System Reliability Modeling: Reliability Block Diagrams -4

4 R oY
j > Reliability
1 Rpgx (t) = Ra(t)Rg (DRc (DR (1)
d 20 (20 : -
| RC (t) = ile( i ](Rtrunk (t)) (1_ Rtrunk (t))ZO
. =
N Rp (1) =(Ris (1)) %% Ry (t) = reliabilit y of a line circuit and its station
Q Analysis of complex reliability structures:
= Decomposition or factoring methods
o what if structure can not be decomposed into series, parallel, or k-out-of-n
subsystems?
( A D h £ D
input output input
—— B — :> _—
B is working
N C E J S =
Rsys t)= Rsys (t] B)RB (t)+ Rsys (t] g)(:l-_ Rg ) A D
Rys (t]B) =1-(1-Rp (1)1 —-Rg (1)) input
=Rp (t) + Re (t) —Rp (t)Re (t) B is not working
Ry (t| §) = RA(M)Rp (1) + Rc ()Re (1) = RA () Rp () Re (HRE (1) C =
Copyright ©2004 by K. Pattipati
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N %5 | Analysis of Complex Reliability Structures - 1 |

QO Analysis of complex reliability structures
= Minimal path set method

o a path set is a continuous line drawn from the input to the output of the block
diagram

© a minimal path set is a minimal set of components whose functioning ensures
the functioning of the system

o key: a system will function if and only if all the components of at least one
minimal path set are functioning

o system reliability = P{ at least one minimal path is functioning}
o example:

Minimal path sets are : {A,D}, {B,D}{B,E} {C,E}
Let a,b,c,d,e denote states components (a=1= working;a =0 = failed)
Rys = Pr{max(ad,bd, be,ce) =1}
=Pr{l—-(1—-ad)(l—bd)(1—be)(L—ce) =1}
= Pr{b(d +e—de)+ (1-b)(ad + ce—adce) =1}
= Rg ()(Rp (1) + R () = Rp (HRe (1)
+(1-Rg(1))(RA(MRp (1) + Re (R (1) —RA()Rp ()R (DR (1))

EF O DL L

kL L

oYL L

** yse the fact thata® = a, etc.
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¥, 5. | Analysis of Complex Reliability Structures - 2 |

s Minimal cut set method

o aminimal cut set is a minimal set of components whose failure ensures the
failure of the system

o key: a system will fail if and only if all the components of at least one minimal
cut set are not functioning

o system reliability = Pr{ at least one component in each cut set is functioning}
o example:
Minimal cut sets are : {A,B,C}{D,E}, {B,AE}{B,C,D}
Ryys (t) = Pr{max(a, b, c) max(d,e) max(b,c,d) max(a,b,e) =1}
=Pr{l-(1-a)@-b)d-c))d-(1-d)d-e))
(1-(A-b)d-c)d-d))A-A-a)d-b)(1-e))=1}
= Ry ()(Rp (1) + Re (1) — Rp () Re (1))
+(1-Rg (1)) (Ra (DR (1) + Re (DRe (1) — Rp ()Rp (DRc (DR (1)

EF O DL L
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= Indicator variable, x;
{1, if the i th component is functioning
=

O, if the i th component has failed

= State vector, X = (xl, P CURTETRE , Xp, n = number of components

= Structure function, ¢ (x)
y {1, if the system with state vector x is functioning

0, if the system with state vector x has failed
o Structure functions of different types of systems

m_ | System Reliability Computation Using Structure Function -1

H(X)=min(Xg, ....... X0 ) =] I % « Series system
i=1 n
H(X) =max(Xy, . .. .... X,)=1-T]@-x) « Parallel system
( n i=1
1, if> x>k
P(X) = 1 o1 « k out of n system
0, if> x <k
L i=1

= System Availability (Ay,) and Unavailability (Ug)
Ay =P{p() =13=E{p()}| |Uqs =P{g(x)=0}

Copyright ©2004 by K. Pattipati
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o *— System Reliability Computation Using Structure Function -1

X Xs'
. .
input__| . | oufput Minimal path sets of the system:
o —o- AL = X1 X3
i s Ao = X3 X3
Xp  Xg Az = X1 X4 X5
—— o —
A, = XX, X
X, X3 \_ 4 274 ™5 Y,
. > o
input X, X5 X output
) —@—@—@— )
Equivalent system X, X4 X Structure function of the system
consisting of L o oo
minimal paths p(X) = max{ A;,A;,Aq, A}

=1 (1% X3)(1=XaX3)(L— X X4 X5 ) (1 — X3 X4 X5)

= Reliability of the network
r(p) =1—E{(1—XX3)(1— X X3)(1— Xy X3X4 )(L— X X3X4) }

simplified reliabilit
= E{(X X3 + XpX3 = X XpX3)} = P P3+ P2 P3 — P1P2 P3 <:| P Y

expression
2 Substituting p; with exp(-4 t), system reliability at time t can be evaluated

. o Assuming exponential lifetime distribution
Copyright ©2004 by K. Pattipati
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e System Reliability Computation via SDP -1

0 Reliability computation requires evaluation of a function having the form

Pr(LnJ(Ai)) wheren isthe number of minpaths or mincuts in the system
i=1
= Can use: 1) Exhaustive enumeration
2) Sum of disjoint products (SDP) to evaluate the function

O SDP Approach

EF O DL L

OB

o Want to compute: Pr(Al B C)=Pr(A OR B OR C)

o Brute force approach: AU BU C=A+B+C-AB-BC-CA+ ABC
o SDPapproach: AU BU C=A+AB+ABC

O Minimal cut-set evaluation & SDP evaluation are NP-hard problems
m  Reachability analysis can be used to evaluate minimal cut-sets of specified
cardinalities
Copyright ©2004 by K. Pattipati
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e System Reliability Computation via SDP - 2

a Intelligent methods for SDP evaluation rely on
= Ordering of minimal path sets
= Smart inversion methods

a Some SDP evaluation methods
a Abraham Method
2 Primitive, only suitable for small networks

= Abraham Lock Revised Method (ALR)

o Can work with networks having components of the order of 100s, around 10
times faster than Abraham method

= Abraham Lock Wilson Method (ALW)
o Similar to ALR; however, faster for sparsely connected networks

s Klaus Heidtmann’s Algorithm (KDH 88)
> Employs multivariable inversion, fastest

EF O DL L

kL L
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System Reliability Computation via SDP - 3

a When structure function is expressed in SDP form
U,=Plp=0)=3 I U;; U e{u, Al 1, =it disjoint term

m ~ 1 i=]
Vs=Z[HUJ)Z(%jujﬂj‘(sajAjlj) 5‘1‘{0 i ]

i=1 jEIi jEIi

a MTBF, MTTF & MTTR Computation

m can be very large

1 o 1
= ailure rate, 1=————
MTBFy ” TTE
MTTE _1-U, repair rate, u __ 1
¥y MTTR
_Ys mean failure frequency, v=
MTTRy = quency, MTBE
stationary availability, A= MIVUIE
MTBF
. . L od
m Once the failure rate ( A) is known, system reliability can be computed a3
using the corresponding failure time distribution 44
o d
Y
Copyright ©2004 by K. Pattipati .
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4/ - Bounds on System Reliability -1 l

O Bounds based on minimal cut sets and minimal path sets
= A =set of minimal paths
s C =set of minimal cut sets
m R= reliability of i"component (time is |mpI|C|t)

IT4-T1A-R)“*3I< Ry <1-{ T A-TIR, )3

XeC i=1 XeA i=1
s Example: Corresponds to substituting reliability in the structure function

EF O DL L

{0 -0-Ra)A-Rp)(1-Rc))1-(A-Rp)(1-Re))
(1—(1— Rg)1=Rc)A-Rp))A-(1-R)A-Rg)L-Re))}
< Rys < {1-(1-RaRp)(A-RpRp)A-RgRe)(1-RcRe)}

oYL L

Copyright ©2004 by K. Pattipati
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4/ - Bounds on System Reliability -2 l

0 Key idea
Pr(UE) zPr(E) > YPr(EE)+X Y ZPr(EEE) -+ ()" Pr(EE,....E,)

=1 ij<i I j<ik<j<i

Q Bounds based on minimal paths
= Works good when individual reliabilities are small

> Pr(z;) =X X Pr(zizj) < Rys < X Pr(z;)

icA <] icA

EF O DL L

T = i"™ minimal path elements
A= minimal paths

O Bounds based on minimal cuts
= Works good when individual reliabilities are large (close to unity)

2Pr(F) -2 X Pr(FFj) <1-Ry, < 2 P(F)
ieC <] ieC

F. =i"minimal cut elements
C= minimal cutsets

kL L
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Summary l

Failure time distributions

System reliability modeling

Reliability analysis of complex structures
Reliability computation using structure functions
Sum of disjoint product method

Reliability bounds

a
a
a
a
a
a

Copyright ©2004 by K. Pattipati
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8 - Overview |

QO Performability evaluation problem

O Introduce and characterize “dual” performability processes

= Motivated from the viewpoint of instantaneous availability evaluation
problem

m Forward performability process
= Performability-to-go process
= Characterization in terms of linear hyperbolic PDEs

0 Relationship with previous results
0 Numerical solution of hyperbolic PDEs References:
a Examples * Meyer, 1979
. * Trivedi
O Extensions the random reward rates - Pattipati et al., 1993, 2001
Q

Summary and future research issues

Copyright ©2004 by K. Pattipati
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A . System Performability Evaluation Problem

a Motivation

= Hybrid-state systems

Configuration
Dynamics

System in a Given
Configuration State

= Application

Discrete-state Process

s

U

Continuous-state Process

o Fault-tolerant computer systems
o Flight control systems
o Tracking maneuvering targets in clutter

QO System performability evaluation problem
X €(L2,...... ,N) — Set of configuration modes; N <o

Slow Time Scale
Markov Chain

Fast Time Scale

Y, = Cumulative performance over[0,t);0<t<T T = Mission Time

Y, =[orx_(z)dz or dY, =ry (t)

ry (t)=Performanc e (reward) rate in state X, at time t

[ Probability distribution of the random variable Y; is termed performability ]

kL L
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' Reward Rate Process |

O Reward rate process

= A deterministic process in each configuration state, x, €(12,...... N)
/"i (t) 4 A
’\_V/‘\r}(t)—;
rl(t)i ot
=
N J

= Special cases

o Constant performance rates — r;(t) =r;,if X, =i

o Interval availability — r (t) :{

> Availability - 1, (t)

Copyright ©2004 by K. Pattipati

1

0
{5(t—T) if X;eS

iIf X, €S, Setof operational states
if X, €S,Set of failure states

if X.eS
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NS & Performability Processes |

d
d

J 0 Forward performability process

: = Cumulative performance over [0,t),Y, T =j(‘)rxrdr
d /yt“ \

N

W

—y Asample path of o

N Tt
0 Performability-to-go process
= Cumulative performance over the remaining mission interval [t, T) Z =’ r, dz

e ™

—) Asample path of {Z,}

[

Tt
N Y .
«d Jd
O Relationships: z,+Y, =Y; = Z, ala
»  Why define the two “dual” processes? 4 :
Copyright ©2004 by K. Pattipati .
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b 15 1 Configuration Dynamics |

0 {X.}1s modeled as a finite-state, non-homogeneous Markov process
4 Xt )

A

—) Asample path of {X,|

O~ N W

I R
. T:tJ

= Infinitesimal generator matrix Q, =|a; (t)]

Prixea = 1% =ij-4; & — Kronecker delta function

At—0" At

iNglqij(t):o:Q(t)gzo; e=ft1...1]

= State probability vector m(t)= 1, (t) I, (t)......1, ()] 1S given by

d%—t(t) Q" (k) =1()=exp] {Q" ()~ (o) I, (t) - Prix, =i}
* Q(t)=Q = Constant = homogeneous Markov process

« Q(t)=Lower tria ngular =  non-repairable system

Copyright ©2004 by K. Pattipati
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Primal

Evaluate

Key Idea |

Dual
Evaluate

J

i

RN

S

e

vV

Qe

T

0

In addition, for changes In certain parameter 0

——é

Copyright ©2004 by K. Pattipati
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Reference:
Pattipati et al., IEEE Trans.
Computers, March 1993
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»& | Instantaneous Availability Evaluation Methods - 1 l

a Two methods of evaluating instantaneous availability A(t)=Pr{X; s}

= Traditional method (forward time method)
AT)=x1;(T)=c" 0(T)
ieS

. - 1 if ieS, setof operational states
"o otherwise

IT,(t) = Pr{X, =i}

For evaluating A(T) for each initial state X, =i, 1<i<N, we must solve

1(t)=Q" (t)I(t) |N times

= Alternate method (backward or reverse-time method)

AT)= i%Pr{XT eS| X, =i}Pr{X, =i}= i%gi O t)=¢"(OmE); o<t<T

o Backward differential equation for &£ (costate, Lagrange multipliers, dual vector)

—¢=Qci <(M)=c

Copyright ©2004 by K. Pattipati
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»& | Instantaneous Availability Evaluation Methods - 2 l

Q For evaluating A(T) for each initial state X, =i, 1<i<N, R
: Mission time T
= Need to solve -£=Q¢ once, and compute A(T)=¢"(0)1(0)  must be fixed
0 Alternate method for homogeneous case

Q(t)=Q = Constant
Define w(t)=&(T-t)

wi(t)=&(T —t)=Pr{X; €S| X7 =i}=Pr{X, €S| X, =i}

o Time-shift invariant
o Forward differential equation for w(t)

w(t)=Quw(t); w(0)=c
s Evaluate A(T) via
A(T)=¢"(0)12(0)=w'(T) 1Z(0)=c"( & ) 1Z(0)

= Mission time T can vary, but still need to solve vector differential equations
once. Do not allow re-specification of S (and hence c), however!!

Copyright ©2004 by K. Pattipati
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N 4 Sensitivity Analysis of A(t) l

O Sensitivity analysis of A(t) w.r.t changes in Q(t) and I1(0)

= Small perturbations AQ(t) in Q(t) and ALT(0) in II(0) results in a
perturbation AA(t) in A(t)

AAT) = £T (OATI0)+ [T (A" (e

O Parameter sensitivity analysis of A(t)
= Suppose that there are m uncertain parameters {6},

EF O DL L

" |et D(t)=0Q(t)/d6;, w,; =0I1(0)/d6,

= Sensitivity of A(T) w.r.t. ; is 52(;): £(0) v, + [£ (0] (0)I1(r)dz

= Need to solve forward and backwatd equations onfy once for any number
of parameters 6, provided that the mission time T is fixed

o For the homogenous models, this is true even if T is varying

oYL L
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' Summary l

Forward Approach Backward Approach

@

Initial conditions can
vary

Both T and initial
conditions can vary

Same idea extends naturally to performability evaluation problem

Time-varying model T can vary

FFF oL L

Time-invariant model | T can vary

Instantaneous Availability Perfromability

Forward ODE ¢ > Forward PDE

Backward ODE < > Backward PDE

Sensitivity analysis via < > Sensitivity analysis via

forward and backward ODEs two PDEs . N

For homogeneous Markov models, both T and initial conditions can vary . :

for the ODEs or PDEs d
Copyright ©2004 by K. Pattipati :
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N, 5 o Forward Process |

a {x., Y, }is a Markov process
= Joint distribution of {x., y; | given x,
F(y.t)=[F;(y.t)] where F;(y,t)=Pr{y, <y, x =jlx =i}
m Forward PDEs

D)) () Q) where Rit)= ciag {1 (0}
= Forward moment matrix

2 a OF(y.t)
Mn(t)_!)y 5 dy

EF O DL L

MO0 (0)= Ly % = i1 =i
s Forward moment recursions

dMS—;l(t):|\/|n+1(t)Q(t)+(n+l)Mn(t)R(t) with M,(0)=0 (n>1)

M,(0)=ex0 1)z | ~prix = i1 =i]

Copyright ©2004 by K. Pattipati
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N2 | Example: An Unrepairable Availability Model l

a Two state model f A
m State 1: failure state; n=0
= State 2: operational state; r, =1
n Failure rate: A(t)>0 . J

s 11(0)=[0a] = system is operational att=0
m Performability is the same as interval availability in this case

Priy, >y }= exp[— i o) dGJU (t-y)

y

b, <y>=z(y>exp(—h<a>da]u (t—y>+exp(—u(a>doja<t—y>

0

A A
1 1.0
—= T
hﬁ - ﬂ‘
" 3‘3 e MU (t-y)

= < 'S e M o(t-y) 44
e a— At : A o |
0.0 — 0.0 L j j
Cumulative Performance, y— Cumulative Performance, y— %
Copyright ©2004 by K. Pattipati .
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15 Adjoint Process |

Q Distribution of z, given X,
g(z.t)=[g,(z.t)......, 9,(z.t)] whereg;(z,t)=Pr{z, <z|x =i}
= Adjoint PDEs

_ agg,t) _ —R(t)aga(jt) +Q(t)g(z.t)

= Moment vector of z,

= 0g(z,t _ . .
\_/n(t):lz” gézz )dz, ie, v (t)=E{z"|x =i}

= Adjoint moment recursions

_d\—/n+1(t) :Q(t)v

it V. (£)+(n+1)R(t) v, (t) withy,(T)=e

Copyright ©2004 by K. Pattipati
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> 1 Homogeneous Case |

0 {x }is a homogeneous Markov process < Q(t)=Q IS a constant matrix
Q The reward rates are time-independent << R(t)=R is a constant matrix
0 Under these assumptions, { ., ¥; } and {x,z | are both time-shift invariant, i.e.,

EF O DL L

T t
p{ J nedz<y|xr =i}: p{jrxrdr3y|x0=i} forally>0 and1<i<N

L g T-0=F(y.t)e ad v, -0=M,()e

= Define f(y,t)=F(y,t)e and m (t)=M,(t)e
= Make the transformations ( T-t, Z, R ) = (t,Y,R) in adjoint equations
o Adjoint equations reduce to forward equations

ofyt)__otly.y)

ot oy
" Define z,(t)=m,(t)/n!

+Qf(y.t) ... ... (A) and —mL o

4 Y
> R T _[ 1 > _n _1_> R T J. =Zn
Cascaded structure of
* * moment recursion
Q Q

n0)=0 %0)=0 g
| |

o
o

40
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@

' Relationship to Previous Results |

O Laplace transform of m,(t):

|_n+1(S) = (J)e_St mn+1(t) dt

119)= " )R] e
= Can be obtained via two approaches:

i) From the recursions of m_(t)
i) From the relation between m, (t)and M, (t)

dma—:l(t)z(n+1)Mn(t)[ where r=[r,......, r, ]’

= Jyer, Donatiello & Heidelberger’s integral form for f(y,t) is equivalent To
expression (A)
t
fi(y.t)=e"U(y-rt)+ %ﬂi pJe T f(y—rrt—7)dr
j=1 0

j#i

where Z’i (pll —5”' )= qu ) i-e-1 A(P_I)Z Q
where A = diag(4; ......4,), 1/4; = Mean holding time in state i,and
P= (Pij ) , transition probability matrix

k L

oYL L
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o | Moments of the Interval Availability Example l

o A)=A4 B
[ | Mean E[yt |X0 22]2(1—9_ )/Z
= Second moment  E[y,” | X, =2] = 2(1—e"“ —Ate‘“)/,z

@

FFF oL L

Moments for two state example

200

&
g

(O
8
A L

- m-sigma

g

......

o

\ ), PR i, i S i
0 200 400 800 80O 1000 1200
time —»

mean and mtd. dev —»
a

o

T L

T
(1] 200 400 600 BO00 1000 1200
time —»

mean plus or minus sigma —

2=0.0005/hour
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N5 Numerical Solutions - 1 |

a Consider the forward PDE for F(y, t)

PO FODri)-Fyoab)

With typical initial conditions
F(y,0)=1U(y); F(@O,t)=0 (t>0) U (y ) — Unit step function

= Write F(y,t)= FO(y,t)+ F@(y,t)

t t
FO>y,t)=[F;®(y,t)1 and F;(y,t)= exp[(j}q”() j EY'frj(T)de@j
=  The linearity of the PDE vyields

oF (Z;t(y’t) __OF (;(y’t) R(t)+F®@(y,t)Q(t)+F (1)(y,t){Q(t)— Diag [q ii (t)] }

with F@(y,0)=0, F@(0,t)=0 (t>0)

EF O DL L

= u(y,t):=[the i" row vector of F(?)(y,t)]"
f(y,t):=:[the i" row vector of F ™ (y,t}{Q(t)— diag[a; (t)1}1

Then %+R(t)%=QT(t)g+i with u(y,0)=0, u(0,t)=0 (t>0)

kL L
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' Numerical Solutions - 2 l

= Assume that R(t) and Q(t) are both continuous matrix functions so that there
exists a unique solutionu =u (y, t) ina given interval Q: (y,t) €[0,Y]x[0, T

= Staggered “leapfrog” finite-difference scheme
ta

m+1

m

m-1
-1 j+1

»
»

y
> Approximate the derivatives by difference quotients

L
2At

[u(j,m+1)—uf j,m—l)]+2—1hR(mAt)[u( j+1m)-u(j-Lm)

—Q" (mAt)u(j,m)- f(jay,mat)=0 fori< j<J-1

]

(+ Accuracy: o(at? +ay?)
» Computational complexity: 0(32m?)
A necessary and sufficient condition for stability: Courant-Friedrichs-Lewy (C.F.L) condition

2—;max{ri(t)|i=1 ........ N:te[0,T]}<1

S Ay and At —Discretization stepsizes

.

Copyright ©2004 by K. Pattipati
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N5 Numerical Solutions - 3 |

ol
ol TP .
N = Implicit finite difference scheme
a ty
d
N m+1
1
& m
1] j+1 -

|

y
Ait[u(j, K +1)—u(j,k)]+%{R(kAt)Do(AY)U(J', k)-QT (kat)u(j, k) f(i.k}

+%{R((k +1)At) Dy (Ay)u(j, k +1)- QT ((k +DAt)u(j, k +1)— f(j,k +1}=0

> Define an augmented NJ-dimensional column vector G(t) = [u(1, k) u(2,k)......u(J,k)]"
2 Yields a sparse system of linear equations

o Solve this very large sparse systems of linear equations via a conjugate-gradient
method
e Accuracy: O(At2 +Ay2)
e Unconditionally stable
2 A compound finite difference scheme

o Employ the explicit scheme first to initialize the iteration procedure of the implicit
scheme at each time step
o The result of this iterative process is used by the explicit scheme at the next time step
Copyright ©2004 by K. Pattipati
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@

Computer 1 Computer 2 Computer 3

e d . =

Bus 2

0 Failure processes are modeled via Weibull distribution

= Failure rate of each computer: h,(t)=a,4,(1,t)* p~*

= Failure rate of each bus: hp(t)=a pdp(Apt)*b™
0 Coverage factors: ¢, for computers and c,, for buses
0 The state of the system is denoted by (i, ])

= | = the number of operational computers

= | = the number of operational buses
o At least 2 computers and 1 bus should be operational

[
»

(3’2) 2hb (t)cb (3’1)
th (t)(l—CV
3h, (L@E=T,) +hy (1)

3h,(t)c, 3h,(t)c,

v 2h )7 2h, (t)1-c,)
(2.2) 2hy (t)c,

Copyright ©2004 by K. Pattipati
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m_ |  ADistributed Computer System Example -2 l

" Rewardrates: rzj) =2.7, rpj =19, for j=12, rp =0
= Pr{y; < y}for various values of parameter o

@

4 Logarithm of Pr{ y; < y}for various values of the Weibull A
parameter o with the same mean time to failures
T b Alpha=0.8
42\ o4 - Alpha=1.0 Vs ~
I Sy A, =0.0005/ hour
_% -wo: p
e Ay, = 0.0001/ hour
£ c, =0.99, ¢, =0.995
8_ 2300 4
= Xo =(3,2), T =50hours
© 47 . Wy
(@)
(@)
B Rais RASS RamE Raas ng | RSN
¥ » 3 PV D N P 1D
Cumulative performance value —
\
o
d
a
a
Y
Copyright ©2004 by K. Pattipati .
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QS Performability Model with a Random Reward Structure -1

O Problem formulation
= Each reward rate I is a time-independent random variable with known
density Py (r)
" Assume that the Fourier transform of p, (r)w.r.t. r exists
(@)= e 1 p, ()dr
and the Laplace transform of I, (w) w.r.t. @ exists
Li(&)= LIl (@)]=],e"li(@)do
= {x |t> 0} is a homogeneous continuous-time Markov process,
i.e., Q=A(P-1) isa constant matrix

= A=diag{4,......, An 1 the waiting time in each state is exponentially
distributed with parameter A;

" The state transition matrix P =[p;;] Is constant
= Define a vector of conditional distributions

vy, t)=[v(y,t)......, vy (y,t)]" with entries v;(y,t)=Pr(Y, <y|x, =i) (t>0)
= Assume that the double Fourier transform of v(y,t) w.r.t. y and t exists
s(w, )= [ [e 19V~ 1oy(y, t)dydt
Copyright €2004 by K. Patipai
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J Performability Model with a Random Reward Structure -2

= Performability analysis in double Fourier transform domain

s(w,0)= L (w1-DAP)'De

jo _ _
where D = D(a),o-)=diag{|_l(’11+lo'j ........ LN[ﬂN +Jaj}
@ @
= Furthermore, if D is invertible, B e
1 _ _
S(@,0)=—(@D™ - AP) e S(,0) = — (ol + 0R—Q)
jo @

= Moment approximations
= Define a vector of conditional moments

m, (t)=[m"(t),....

.,m,"(t)]" with entries m"(t)=E[Y,"|x, =i]= Iyy”vi (y,t)dy

= Assumed that the Laplace transform of m"(t) w.r.t. t exists

m, (s)=L[m, (t)]= jte‘“mn (t)dt

= The conditional moments are given by

(i) m(t)=Qm,(t)+

where ¥ =[E(r,),

Copyright ©2004 by K. Pattipati
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E(r,)" and E(r,) is the mean of reward rate {I‘j}'_u
j=1
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Performability Model with a Random Reward Structure - 3

(i) Especially ,if 2, #0foreveryi=12,...... N

for the second moments:
m, (t)=Qm, (t)+2Rm, (t)+2A* (I —e™*)o?

FFF oL L

. . N
where o? =[o’,......, )T and o}’ is the variance of reward rate {r; }
=L

(iii)  For higher order moments, similar ODE exists
» The system matrix is Q
» The forcing term involves all lower-order moments

> Compare the deterministic case: the forcing term for n®" conditional
moment involves only the (n-1)™ conditional moments

Copyright ©2004 by K. Pattipati
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N5 Summary l

Q Unified framework for the performability evaluation problem
= Nonhomogeneous Markov process models of the configuration dynamics
= Time-dependent reward rates
= Concept of performability-to-go
= Random reward rates

a Extensions
= Random reward rate processes

= Computational methods

o The method of lines: discretize the spatial (y) axis to convert the PDEs into a
set of ODEs, then integrate these stiff ODESs

© Multi-grid methods
o Parallel algorithms for hyperbolic PDEs
2 Uniformization Methods

= Reconfiguration control

EF O DL L
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