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Review of Lecture 3
M/M/1/N queue

M/M/m/m queue

Engset Model

M/M/1 with feedback
Machine Repairman Model

Some Application Examples
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(I Review of Lecture 3 - 1|
O Birth-death Processes:
Ao A1 Mol
OO RNCN e
K1 |99, fim Hn+4-1

A—1Pn—1 + Un+1Pn+1 = ()\n -+ /Ln)pn global balance Eqgns.
An—1Pn—1 = UnPn local (detailed) balance Eans.

L )‘n—l
=> [Pn — Pn—1
Hn

oo n—1 -
get po from |(1+ > [ ““) ' =0 )
n=1i=0 Hi+1 J:
a
a
Copyright ©2004 by K. Pattipati .

3 ‘\Illlll



FFF oL L

&

0 M/M/1 queue:

A=\ n>0
pn =p n>1

0 M/M/m queue:

(I Review of Lecture 3 - 2 |

0 M/M/1 queue (Infinite server queue):

Un =nu n >1

)\n:>\

pn = min(n, m)p

O M/M/1/N queue: Finite buffer case

} M/M/1 queue with feedback is similar !!

% =X 0<n<N-1

at most N

A

Pn = Pn-1= PPn—1 = p""Po

Copyright ©2004 by K. Pattipati

pn =p 1 <n <N
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(I M/M/1/N Queue Analysis - 1|

0 M/M/1/N queue

N
> pm=1=14+p+p°+...+p")po=1
n=>0 I—p
— PO = T pN+1 (note: as N— oo, pg = 1 — p...M /M /1queue)
1 o n
n g_pif)—lﬂfl for 0 <n<N|

pNy = prob. that the system is full

N
= prob. blocking = pg = (11_;‘?3_“;1
Truncated modified geometric pmf

B N PR _ (1= p)[1 = (px)N 1]
G(z) = nZ::O 1 _ pN+1( —p) = (1— pN+1)(1 — pz)
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(I M/M/1/N Queue Analysis - 2|

« Average queue length

Q=

dG(z) = (1-p) [-(N+D)p" 2" (- pz) + p(L—(p2)" )] |
dz ™ 1-p"") A~ pz)’ .

PB
f_/%

p__(NDp Py (N2 L)
l-p) @A-p7) @A-p) 1-p"")

— P _[-(N+DP]=Q, ., Jl1-(N+DP,]—>Q, ., as N — oo
1-p)

« Throughput
N

Copyright ©2004 by K. Pattipati

N
X = Z HUnPn — M Z Pn :M(l _pO)

n=1 n=1

N
pN—l—l

A A1 —pp) = throughput = u(1l — pg)
AP~ : >

= p1- ) = A[1 - Pg]
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s 0t IM/M/1/N Queue Analysis - 3|
a
: So, in M/M/1/N queue p(l — PB) il | — PO
o N
1—p)
. s @A=p)p” N
. PB—PN—I_pN_HN(l p)p forN >1&p<1
P
P [n(=—B-
:>pNle or N — (1—P
. [np
Can use this relation to design buffer size.
For example 57
p=05 Pg=10>= N=—"=x9
—0.3
—5.7
p=0.5, Pp=10"°= N=— " ~19
—0. 1
* Note that p can be >1. If p >1, change |P, =p/N)+1 ;| anddon't
d'd
d'd
, -1 " -1
actually have a control over £ since |R, =p, = (/;N+l)_/91 ~ pp as p — oo :
Copyright ©2004 by K. Pattipati :
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4 IM/M/1/N Queue Analysis - 4|
a
a
r =t Py T
N X (e
. W~ /' 1.0
. N | 0.5
1 N>>1
N+1
o o — 1 2 0 —
 Average response time: r
Q)0 -Py) - fepg
X M1 — Pp)
1 1 N Py
R="= -
nl—p w(l—-p)1l—Ppg
(Or) NP R o |
M/M/1 4 'd
Rutjnijayn = Raggyaj[1—1— ]‘_.?B = _/P; 1-(N+1)P5]| ke
a
a
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(I M/M/1/N Queue Analysis - 5|

1 1
Whenp>>1,Q—+ N———=N—- —
p—1 pPp

N 1

e Utilization:
X
U===p(1-Pp)
I

« Average waiting time

1 1 p N Py
W=R--—=-"—"—
po opl—p p(l—=p)(1-Pp)

» Average waiting queue length

2

p NPp-p d'd

= WX = 1— Pp) —
a
o
o
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' (l M/M/m/m Queue Analysis - 1|

O M/M/m/m: the m-server loss system: valid for M/G/m/m system also
A=\ 0<n<m-1

n =nu, 1 <n<m

A A, 1
pn=—Pn—1= pn = (=)"—D0
oy ©noonl

S0, po =Y ()" =]~
n=0 H T

pm = prob. {all servers busy}

(/I)ml p"
__H m! __ m _pB}simiIar to truncated
no ALl o0& L1 ;
Sy = n = Poisson
Z;‘(y) n! ;,0 n!

This is known as Erlang’s B-formula

« For 5 < p <50, useful approximations for m for a specified g are:
Pp=.01 = m=xb5+41.17p
Pp=.001 = m~7.841.28p

Copyright ©2004 by K. Pattipati
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' (l M/M/m/m Queue Analysis - 2|

Average queue length

n

m m 1( pl)'
n= —1)!
Q= ) npn=————7— = p[l—Pm] = p[1—Pp]

= Average number of busy servers

Note that as p 1 P 1 & Q — m as it should!

Throughput: X = A(1 — Pg) = AX(1 — Pp)

Alternatively, m I
X =3 pimpn = —— 2O = g = M(1-Pp)
n—1 n=0 nl

Average response time = R = —
!

Average waiting time =W =0

Average waiting queue length=Q,, =0
Utilization U= A= Ps) _ p(1=Pp) _ @

m L m m
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' (l Engset Model Analysis - 1 l

0 Engset Model
An=(M-n)A 0<n<N

pn =npw N < M

n—1_A n—1
= Pn — ( );pn—l — )P "Pn—1
So, (M . 5 M\ M!
b=\ n )P PO WRETE A T (M = )
N
M\ pi—1
po=1[) ( . )p"’]
n=0
M n
n p called
Pn = M ,n=0,1,2,..., N Engset distribution g 'a
o
a
Copyright ©2004 by K. Pattipati .
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(I Engset Model Analysis - 2 l

* For M>N, the blocking probability

[

MY\
N)p

Pp = Py =

N M
()

« Average gueue length

N
Q= Z npn P, = P,(M) to emphasize its dependenceon M for a given N
n=1 _1
N N
M! M
= po(M) p"; po(M) = ( ) p"
nzzjl (i?—ll)!(M—n)! nZ::O "
g M — 1!
= Mp - M "
P pol )nz::O n!(M—l—n)!p
Mp - M
Sl Po(M) [1 — Pg(M — 1)] = Average # of busy lines 4 d
po(M —1) a3
J
J
Copyright ©2004 by K. Pattipati :
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(l Engset Model Analysis - 3 l

MM - po(M)
-ThrouhutX_—E; n = nQ = 1—Pr(M -1

FFF oL L

_ M = N case
* Responsetime 1 =

A
o Utilization U = X _ @ idle‘izljbusy
Npu N

Note: 1)AsM !'1,& 42103 M A ! 1, the measures reduce to those
: N /
for M/M/m/m system: Q="(t-prg) X=X(1-Pp)
7
— ( N ) an(lia)N—n; P P A

2) M=N N
T P o
n S 14p A+p

= Pn = N -
N m
[Zm:O ( m ) P ] Binomial Distribution

— each server is either busy or idle & independent of others

| =1+

= performance measures
Np N 1
@ =Na= X = =pQ; R= —;
1+p 1+p L

Copyright ©2004 by K. Pattipati
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; Analysis of Machine Repairman Model - 1

O Machine Repairman Model (simplest form of closed network)

terminals

CPU
server

w(n)

}Hz = 1/)\#
When n user requests are at the CPU, (N-n) are potential user requests, so tha

showed earlier that:

N N
Ap = (N—n)A 0<n<N-1 v < X(N) < min {/;,, }
’ O forn>N Z_l_ﬁ_i z4+1/u

max[N/pu, z+1/u] < R(N)<z+4+ N/u

p(n) = pu {constant}

(N—n+1)A _
In general: »n = Pn—1; =12, N
w(n)
For later notation, we write it as: . n
N—-—n—+ 1)\

p(n/N) = ( nt1) p(n—1/N); n=1,2,...,.N 4 4
p(n) J
N A" o
= N = —p(o/N) N
Copyright ©2004 by K. Pattipati ( o ?1). HiZl H (Z) ¥
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Analysis of Machine Repairman Model -

I AN AT o
p(O/N) — ﬂ.;o (N —n)! ' H?:l M(i)] . o
Single server: 1(n) = p = p(o/N) = | > (NNf'n), : p”] = [G(N)] 1
n=0 )
p(n/N) = (Nji' 5 -p" - p(o/N)

o | B | & N!
Infinite server: ©(n) =np = p(o/N) = L;O (N —n)in!

-1
pn] = [1+po7"

. : e N N— p Engset Model
N) — ne1 _ g)N-—n- —
Binomial Distribution »(1/N) ( . )a (1-a)"7% a="— +, | M=N case

Let us consider the single server case in detail.

 Recursive expression for G(NV)
N N

GIN)= 5 ———p"=14+Np+N(N-1)p°+..+N!p"
=5 (N —n)!

N—-1 od o
=14+ Np[l+(N—-1)p+..+(N-1)p ] .
=14+ NpG(N —-1); G(0)=1 d
Later, we will see that this kind of recursion extends to networks also and forms the a
basis of the so called “Convolution Algorithm” d
Copyright ©2004 by K. Pattipati .
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1% Analysis of Machine Repairman Model -
o |
a
U . N
3 Throughput X(N) = g p(n)p(n/N)
‘ n=1
W = (1 — p(o/N))
|
= pU(N)
+ Utilization, U(N)= __Throughput _ X(V)
Max service rate L4
Also B 1 1 GIN)-1 G(N-1) G(N-1)
K= [1 - W] =T S M e TN e
_G(N)-1_ G(N-1) ~ _ G(v)
U(N) = G(V) =p G(V) G(N) N1
* Mean value analysis (MVA) recursion:
Know B N! n 1 ph | 1
pin/N) = o G T (V=) GV
_ -, 1 ettt
pin=1/N-1) = = "GN D T (N ) BN — 1) -
p(n/N) _Np-G(N—-1) _G(N)—-1 _ G(N-1) _ a'd
- UN-D - ey oy ey W) -
=
Copyright ©2004 by K. Pattipati .
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; Analysis of Machine Repairman Model - 4

PN = T(N) p(i = I[N = 1)
= X(N) -p(n—1|N —1)
L

* In words, the probability distribution with N customers is related to the probability
distribution of the same system with (N-1) customers. This observation is valid in a
more general context involving multiple nodes and forms the basis of Reiser and
Lavenberg’s Mean Value Analysis (MVA) Algorithm.

Pursuing the recursion further,

* Average Queue length
N

Q(N) = > np(n/N)

n=1
N
— XiN) Y np(n—1/N—1)

b n= l
od o
_ X(MN) Zl(n—l)p(n—l/N—l)—f- Zp(n—l/N—l)] I
n = a
= X4 -1 -
Copyright ©2004 by K. Pattipati .
‘\I . LL LR



; Analysis of Machine Repairman Model - 5

Or

R(N)=—[14+Q(N —1)] valid for networks also

1
7

FFF oL L

* In words, the mean response times of an arriving customer is equal to his own
service time 1/u plus the waiting time due to customers in a system with (N-1)
customers = an arriving customer in a system with N terminals “sees” Q(N-1) in
equilibrium. We will see presently that in an M/M/1 system (or so called open
systems) an arriving and departing customers “see” the same # of customers (so
called Burke’s theorem). Not so in a closed system. In a closed system, an arrival
sees a network with one less customer (himself removed)... so called “arrival
theorem of closed systems”.

* Implementation (no closed form expression = need to evaluate via a recursive
algorithm)

k L
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Analysis of Machine Repairman Model - 6

QQ < O
DOn=1,2,...N 3\
1
Re +— —(1+Q)

p Q)

Rc‘l‘% >j RC(N)

Q + XR. X(N)
END DO

X /

U(N) = =
L4

X <+

O  Questions:

1. How to compute response time distributions? ... we will do it only for M/M/1
2.  What does it all mean? ... B-D processes are “time-reversible Markov

chains”. We will pursue this in next class.

Copyright ©2004 by K. Pattipati
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Response-time Density of M/M/1 Queue -1

O In discussing M/M/1 queue, we made no assumption regarding queuing discipline
—> All queue disciplines yield identical mean response times and mean queue lengths
However, the distribution of response times does depend on the queue discipline.

We will compute the distributions for FCFES discipline.
Let us denote

Fr(r/n) £ P{the response time of tagged customer < r|

n customers are found in the system upon arrival }
tagged customer

X O
n—1 1\

/
R=t+tittot . ttoy+ by

service time service time of remaining (or residual)
of tagged customer customers service time of customer
in queue in service

/
 Since service time is exponentially distributed ¢» has the same density
(recall memory-less property)

Copyright ©2004 by K. Pattipati
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Response-time Density of M/M/1 Queue -2

'r - - .
= t,t1,to, ..., tn_1,t, are 1.i.d. random variables
Lp(s/n) n )
s/n) =
. s+ u

Lr(s) = i Lr(s/n)pn

n=0
n+1
- 1—p)p"
5+,U-> (1—=p)

_ ( T )(1_)) 1 u(l-p)
s+ 1 [15’1’“# [s + (1 —p)]

1
—> Response time is exponentially distributed with mean

fr(t) = n(1 — p)e—ﬂ(l—p)f.
Examples:

1). Suppose have M/M/1 queue and increase A and p by a factor k>1
kX
= o= same
ko
= ) = P same

Copyright ©2004 by K. Pattipati
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' f Application Examples -1

O
d
a 1
O But R = = reduced by a factor of k.
N ku(l —p)
d An arriving customer sees the same # of customers in the steady state, but
: customers will be moving k times faster.
2). Statistical multiplexing vs. Time division or Frequency division multiplexing
A/m A H
A/m @7 1
A/m = R = (1= p) True only for
¢ P Poisson streams
1 1 .
[/m -4+ — 1o If arrivals are
Afm ( ) ke pL=p regular, time &
, m frequency division
A/m p/m = R ——— = Large delay ) :
w(l —p) multiplexing can
, m m 1 be good
A/m P — - o
poo l—p p
4
d
a
a
o
Copyright ©2004 by K. Pattipati .
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' f Application Examples - 2

3). Single queue versus separate queues (OR) why banks have single queues?
1 = 30 packets/sec

20 packets/sec 1 = 30 packets/sec

— I

1 = 30 packets/sec

20 packets/sec

seperate :>R5'1 = Rg,

20 packets/sec

—
20 pn.ckutsM

merged queue

1 = 30 packets/sec

oYL L
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' f Application Examples - 3

16 1 1.6
PQ: 2-— . —-3=— =633
9 2 3
1 533 1
Ry = — 1 1.6) = .0867 < R< (merged queue is better)
=307 30 1 30 T 16 o

4). Should | buy several small severs or one large one?
1 = 30 packets/sec

40 packets/sec Rp = 0867
1 = 30 packets/sec
40 packets/sec i = 60 packets/sec 1
Rrjec=——= .05 < R:
LS ™ 60 — 40 ‘

« What happens to waiting time?

oYL L
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! (I Application Examples - 4 I

4 Qe

o |

a

a W = x 53 = .0265
a 60 — 40

: Wye =22 = 0334

. L5 = 60/3 -

:> W[S > W(_j but R‘TJLS' < RC

Buy the largest !!

But, from reliability viewpoint, several small ones may be better!!

5) Optimal Routing

1

1

ﬂl_ﬂ“a 2 M,

R=aR +(1-a)R, =

da

—A(l-«a)

a ., (1-a)

Optimum:d—R:O:a =

Hy —-Aa H, —1(1—0[)

&-Fi—l

N

A

A
+
VHH,

Copyright ©2004 by K. Pattipati
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Machine Repairman Model

E (I Summary I
: O M/M/1/N queue
: O M/M/m/m queue
. O Engset Model
O M/M/1 with feedback
O
O

Some Application Examples
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