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Review of Lecture 3

M/M/1/N queue
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Engset Model
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Machine Repairman Model
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Review of Lecture 3 - 1

0 1 2 n-1 n n+1

Birth-death Processes:

….



Copyright ©2004 by K. Pattipati 

4

Review of Lecture 3 - 2

M/M/1 queue:

M/M/1 queue (Infinite server queue):

M/M/m queue:

M/M/1/N queue:  Finite buffer case
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M/M/1/N Queue Analysis - 1

M/M/1/N queue
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• Average queue length

M/M/1/N Queue Analysis - 2
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• Throughput
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• Note that   can be >1. If  >1, change                     and don’t

actually have a control over      since  

M/M/1/N Queue Analysis - 3
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• Average response time:  

(or)

M/M/1/N Queue Analysis - 4

N > > 1


1
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When 

• Utilization: 

• Average waiting time  

• Average waiting queue length

M/M/1/N Queue Analysis - 5
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M/M/m/m Queue Analysis - 1

M/M/m/m: the m-server loss system: valid for M/G/m/m system also
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• For                 , useful approximations for m for a specified      are:
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• Average queue length

• Throughput:

• Average response time = 

M/M/m/m Queue Analysis - 2

• Average waiting time = W = 0

• Average waiting queue length = QW = 0

• Utilization  U = 
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Engset Model Analysis - 1

Engset Model
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• For M>N, the blocking probability

• Average queue length

Engset Model Analysis - 2

NMMpp given  afor  on  dependence its emphasize  to)(
00


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• Throughput

• Response time 

• Utilization 

Note: 1) As M ! 1, &  ! 0 3 M  ! ’, the measures reduce to those 

for M/M/m/m system: ; 

Engset Model Analysis - 3

2)  M=N

 each server is either busy or idle & independent of others

 performance measures

M = N case



Copyright ©2004 by K. Pattipati 

15

Analysis of Machine Repairman Model - 1

Machine Repairman Model (simplest form of closed network)

1

N

When n user requests are at the CPU, (N-n) are potential user requests, so that

For later notation, we write it as:

In general:
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Single server:

Infinite server:

Let us consider the single server case in detail.

• Recursive expression for 

Later, we will see that this kind of recursion extends to networks also and forms the 

basis of the so called “Convolution Algorithm”

Analysis of Machine Repairman Model - 2

Engset Model

M = N case
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• Throughput

• Utilization, U(N)=

Also

• Mean value analysis (MVA) recursion:

Know

Analysis of Machine Repairman Model - 3
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)

• In words, the probability distribution with N customers is related to the probability 

distribution of the same system with (N-1) customers. This observation is valid in a 

more general context involving multiple nodes and forms the basis of Reiser and 

Lavenberg’s Mean Value Analysis (MVA) Algorithm.

Pursuing the recursion further,

• Average Queue length

Analysis of Machine Repairman Model - 4
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Or

• In words, the mean response times of an arriving customer is equal to his own 

service time 1/ plus the waiting time due to customers in a system with (N-1) 

customers     an arriving customer in a system with N terminals “sees” Q(N-1) in 

equilibrium.  We will see presently that in an M/M/1 system (or so called open 

systems) an arriving and departing customers “see” the same # of customers (so 

called Burke’s theorem). Not so in a closed system. In a closed system, an arrival 

sees a network with one less customer (himself removed)… so called “arrival 

theorem of closed systems”.

• Implementation (no closed form expression  need to evaluate via a recursive

algorithm)

Analysis of Machine Repairman Model - 5
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 Questions:

1. How to compute response time distributions? … we will do it only for M/M/1

2. What does it all mean? … B-D processes are “time-reversible Markov 

chains”.  We will pursue this in next class.

Analysis of Machine Repairman Model - 6
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Response-time Density of M/M/1 Queue -1

 In discussing M/M/1 queue, we made no assumption regarding queuing discipline 

All queue disciplines yield identical mean response times and mean queue lengths

However, the distribution of response times does depend on the queue discipline. 

We will compute the distributions for FCFS discipline.

Let us denote 

• Since service time is exponentially distributed      has the same density

(recall memory-less property) 
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Response time is exponentially distributed with mean

Examples:

1). Suppose have M/M/1 queue and increase  and  by a factor k>1

Response-time Density of M/M/1 Queue -2
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Application Examples -1

But                              reduced by a factor of k. 

An arriving customer sees the same # of customers in the steady state, but 

customers will be moving k times faster.

2). Statistical multiplexing vs. Time division or Frequency division multiplexing
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3). Single queue versus separate queues (OR) why banks have single queues?

Application Examples - 2
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4). Should I buy several small severs or one large one?

• What happens to waiting time?

Application Examples - 3
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Buy the largest !!

But,  from reliability viewpoint, several small ones may be better!!

Application Examples - 4

5)   Optimal Routing
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M/M/1/N queue

M/M/m/m queue

Engset Model

M/M/1 with feedback 

Machine Repairman Model

Some Application Examples

Summary


