Lecture 6:
@ Shortest Path Algorithms: (Part I)

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

@ Outline

« Graph terminology

« Computer representation of graphs
= Weight matrix or adjacency matrix
= List of edges
» Linked adjacency list
= Forward star

 Applications of shortest path problem

* A generic shortest path algorithm for single origin-
multiple destinations problem
= Dijkstra’s algorithm . . . label setting methods

o Heap implementation
o Dial’s bucket method

= Label correcting methods
o Bellman-Moore-D’Esopo-Pape algorithm
o Threshold algorithm

UCONN

@ Graph terminology
« Graph G = (V, E)

= V={vy,Vy,...,V,} afinite set of vertices, nodes, junctions,
points, 0-cells, 0-simplices
= E={ey, ey ...,e,} afinite set of edges, arcs, links, branches,

elements, 1-cells, 1-simplices

= To each edge e, there corresponds two distinct vertices u and
v = e is incident on u, v

UCONN

@ Graph terminology

* Directed graph (or digraph) and undirected graph

UCONN

= If vertex pairs are ordered, i.e., e is directed from vertex u to
vertex v, then the graph is called a diagraph

= Direct edge <u, v>:
O O

= U is an immediate predecessor of v and v is an immediate
successor of u

= If the edges have no direction, then the graph is said to be an
undirected graph

= Vertices are unordered
= Undirected edge: (u, v)

O, O

= An undirected graph can be converted into a directed graph by
adding bi-directional edges

= We assume that there exists only one edge between two nodes in
one direction

@ Graph terminology
* Network

= A graph (directed or undirected) in which a real number is
associated with each edge = network = attributed graph

o If have multiple attributes, it is a multi-attributed graph or network
= This number is called the weight of the edge
= No loss in generality
o If a node has a weight, we can define a dummy node such that edge
from dummy node to node has a weight
* Degree of a vertex

= For an undirected graph G:
o d(v) = # of adjacent vertices or # of times v is an end point of edges
o Fact: # of nodes of odd degree in a finite undirected graph is even
o Proof:

iznl:d (v;)=2m

UCONN

@ Graph terminology

 Walk or a path
= For an undirected graph G:

o (V1,V2,...,Vk)is a walk in an undirected graph G if (vi, v2), (V2, v3) ,
..., (Vvk_1, vk) are edges on the walk

= The walk is directed if each edge is directed (<>)

= Note that vertices may be repeated in a walk
- Simple path

= (V1, Vo, ..., Vk) is a simple path if all vertices are distinct

= Directed simple path if all vertices are distinct and each edge is directed
« Cycle

= A path in an undirected graph is a cycle if k > 1 and v, = v, and no
edge is repeated

= A path in a directed graph is a cycle if k > 1 and v, = v, ... simple cycle
if vertices vy, v, . . ., V,_; are distinct

= A graph without cycles is acyclic

UCONN

@ Graph terminology

« Connected graphs

= If there is a path from a vertex v, to a vertex v,, then v, is reachable from v,

= A graph G is connected if every vertex v, is reachable from every other
vertex v;, and disconnected otherwise

 Weight (length) of a path

= Given a path p = <vy, V2, ..., Vk>, we can speak of the length of the path or
the weight of the path

=c,, +C,, +-+C

ViVo VoV3 Vik—1Vk

= Example: weight of paths - u —1t: Cg +

4 ,}/

<

UCONN

@ Computer representation of graphs

e Four methods

* Weight matrix

Weight matrix or adjacency matrix
List of edges
Linked adjacency list

Forward star

n nodes = nx n matrix C = [c; il Orleans

c;; ~ weight of edge <i, j>

No edge = ¢;; = «(e.g., 10

" C;i=0

UCONN

Undirected network = C = CT symmetric = (

Directed network = n(n — 1) elements/words

n(n—
2

D)

) elements/words

@ List of edges representation of graphs

« List of edges
= Useful when the graph is sparse
= #ofedgesm <K n(n — 1)
= Needs three m vectors or a matrix A(m, 3)

Start node list End node list Weight list
(beginning node) (destination node)
b(1) d(1) cd)
b(2) d(2) c(2)
b(m) d(m) c(m)

b=[8,5,4,6,43,7,6,6,3,2,5,6]
d=[1,4,5,8,318,4,721,6,5]

¢ =[1700, 1500, 1500, 1400, 1200, 1000, 1000, 1000, 900, 800, 300, 250, 250]"
= Note the weights are in descending order

* You can start b, d or c list in any way you want

= [tis convenient to start ¢ as a heap for the shortest path problems ... more
on this later!!

UCONN

@ Linked adjacency list representation of graphs

» Linked adjacency list

Pointer to edges
Destination node

1 nil Weight of edge
Next edge
. + =
9 L}nk o 11 300 | nil / (3m + n) words = 47 words
pointer
3 2 800 » 1 | 1000
4 »| 3 | 1200 » 5 | 1500
> » 4 | 1500 6 | 250
6 > 5 | 250 4 | 1000 » 7 | 900
7 6 | 1000 | nil .
> 8 | 1400 | nil
8 7 | 1700 | nil

« Easy to add or delete edges = change pointers to links
* Outlists of nodes

» Can also represent inlists of nodes

UCONN

@ Forward star representation of graphs

« Forward star (out-list)
= Useful when edges don’t have to be added or deleted

= It is not easy to add or delete edges

_ Pointer

Node i

1

2

3

8

9

End vertex

14

Weight

1

300

2

800

1000

4

1200

6

1500

1500

8

250

12

1000

900

13

1400

14

/AN

250

« Backward star
= Similar to forward star with in-list (incoming edges to a node)

UCONN

Rl |l | | NP~ |lO|RARO|IWIFL|IDN]|PF

1000

1700

Total words:
2m+n+1=26+8+1=35

¥% Shortest path problems

We can define several path related problems using the above terminology

= Given any two nodes s and t, find the shortest path (i.e., minimum length path)
from stot... single source - single destination shortest path problem

= Given a node v, = s, find the shortest distances to all other nodes. . . single source -
multiple destination shortest path problem

= Shortest distance from every node to every other node . . . all pairs shortest path
problem . . . Lecture 7

We also distinguish between problems where
» Edge weights (arc lengths) are nonnegative
= Edge weights can be negative

Why do we solve these problems?

Communication networks
= <V, V> in a communication network
= C<V,;, Vv, > = average packet delay to traverse link <v;, v, >

= Shortest path = minimum cost route over which to send data or minimize delay of
route

= Average delay is a function of link traffic ... in fact, a nonlinear relationship
= However, shortest path problem is an integral part of most routing problems

UCONN

@ Reliability networks

*C<V, V> =-Inp<v,v>

* p <V;, V,> = probability that a given arc (edge) <v;, v,> is
usable in the network

« Edges are assumed to be independent

» Most reliable path between s and t = find shortest distance
between nodes s and t with edge weights {- Inp <v;, v,>}

* Note: Reliability of a path =

max Il p<v,v 6 >

17 i1+l
<Vi ,Vi+1>€72'

min— > Inp<v,v,, >

I+1
<Vi ,Vi+1>€7Z'

UCONN

@ PERT networks (critical path analysis)

« Nodes of subtasks, arcs (edges) ~ dependency
* t; = time required to complete j after i is completed

* <I, > denotes precedence constraint that i must be completed before j
can begin

Problem: find the most time consuming path
= longest (critical) path This is the one you want to monitor!
= shortest path with c(v;, v;) = —t;;

Viterbi decoding, discrete dynamic programming, etc.

UCONN

@ Dual of the shortest path problem

 For simplicity, we denote nodes {1, 2, ..., n} and edges <i, j>
= Source = node 1
= Destination = node n, for single destination problem

 Dual of the shortest path problem
= Let us look at the shortest path problem from the viewpoint of the dual
= If we want shortest path to node n only

max A,
st. 4,=0

Ai—ASC =>4, <4 +C

v <i, >

ij
= If we want to find shortest paths to all nodes from node 1, replace objective
function by:

max{A4, + A, +---+ 4.}

= CS conditions
o IfP isthe shortest path then

o j'j:j‘i+cij’ if <i,j> eP
o A]SAI +Cij’ V<i,j>$P

o {A;} are called labels of nodes

UCONN

@ Example

max{A, + 4, + 4, + A}
s.t. 4, =0

A, =4 <5

A=y <2

A=A, <3

A=A, <4

A, =24, <3

Ay —A; <5

Jo= <4
fo— <6
Jo— Ay <4

UCONN

¥% A generic relaxation (dual) procedure

« Initialize:
= Seti,;=0
» L=o(large#) Vi =2,3,...,n
= V ={1}... candidate list

+ Step 1:
= If all inequalities are satisfied
o Stop...found an optimal solution
» Else
o Remove a node i from the candidate list V
» Endif
« Step 2:
» For each outgoing arc <i, j> with j # 1,
o If4—4>c;
< Set ;= +¢j... labeling step
% Add j to Vifitis not already in V
o Endif
» Gobackto Step 1

» Labels {4} are monotonically nonincreasing
* J; <o © node i has entered the candidate list V at least once

» The various implementations differ in the way they select the node from the candidate list V

UCONN

@ Dijkstra’s way of picking the node to relax

e Pick a node with the minimum label

| =argmin{4,}
J

» Needs non-negativity of {c;} and graph connectivity for
convergence!!

» Implementation issues
= use binary heap to efficiently remove node i from V
= Dial’s “bucket” method ... see Bertsekas’s book

* Anode enters V only once if ¢; > 0

« These implementations are called “label setting”
methods or “best-first” scanning methods

UCONN

@ BMDP & Threshold Algorithms

 Bellman-Moore-D’Esopo-Pape (BMDP)
= Maintain a queue of nodes in the candidate list, V
» A node may enter V more than once!!

= Breadth-first scanning or label correcting methods

» Threshold algorithms ... see Bertsekas’s book

= Split queue into two queues Q’ and Q”, where labels of nodes in
Q’ are less than a threshold s

UCONN

¥# Dijkstra’s algorithm

Dijkstra’s algorithm ... assume c; > 0

Step 1: initialization
= setA, =0
= pred(1)=0
. ij=cljforj=2, .., N
= pred(j)=1lifc;<oo
= setW={0}, V={1}.. W={i: A <oo,i ¢V } set of permanently labeled nodes

Step 2: scanning and permanent labeling
= findi€V,where); =min{/},j€V
= setV=V-{i}, W=Wu {i}

Step 3: revision of tentative labels
» V outgoing arc <i, j> with j #1
o ifl; >4+
pred(j) =i
L=+
if(j2V)
V=Vu{j}
end if
end if
if (V = @) stop = computation is completed
else go to step 2
end if

o O O O

UCONN

Illustration of Dijkstra’s Algorithm

e Iteration 1

Node removed =1 = W = {1}
Labels: 4, =0, 4,=5, 43=2, 4,=
Node list: V = {2, 3}

©, As =

e TIteration 2

since /5 < 1,, node removed fromV =3 =W =

labels: 4, =0,4,=5, ;=
node list: V = {2, 5}

2, Jy =00,)5 = 6

e Iteration 3

since 1, < /5, node removed fromV =2 =W =

labels: 4, =0,1,=5, ;=
node list: V = {4, 5}

2,7,=9,45=6

e Jteration 4

e TIteration5...

UCONN

node removed fromV =5=>W={1, 3, 2, 5}
labels: 4, =0,4,=5,23=2,4,=9,4; =6
node list: V. = {4}

=4=>W=
2,0,=9,45=6

node removed from V
labels: 4, =0,1,=5, ;=
node list: V. = {0}

{13}

{1,3, 2}

no need to perform iteration 5 since labels of nodes in W will not change
{1,3,2, 5,4}

@ Interpretations and proof of optimality

Removing from V a minimum label node = W contains nodes with the
smallest labels

At kt step, we have the set W of k closest nodes to node 1 as well as the
shortest distances {4}y from node 1 to each node i of W= ;< /; if i €
WandjgW

At each step, we add the next closest node into the set W

Once a node enters W, it stays in W forever and labels of
nodes in W do not change = W can be interpreted as the set of
permanently labeled nodes

Proof:
= Valid initially because node 1 exits and enters W
= Suppose valid for iteration (k — 1) = 4;< 4 ifiE Wand j ¢ W
= Since ¢, >0, when a node p is removed from V and put in W, then Vi € W, we have
<Z,* Cy; = node i never enters V if it is already in W
= W = set of permanently labeled nodes
= Any label that changes must be from j ¢ W

= At the end of the iteration, we have 4; = 4, + ¢;; > 4, > 4;, Vi EW =W has nodes with
“small” labels

UCONN

@ Computational load and skim tree

e (n—1)iterations

« Each iteration, need to find minimum label = worst case n operations
* O(n?) operations

 Label revision: O(m) operations, m = # of arcs

 Since m < n?, total computational load O(n?)

« Can do better with heaps and buckets for sparse graphs

* Look at shortest paths
» They form a tree called shortest path tree or skim tree
= Spanning tree: tree containing all the vertices

= If want to find shortest paths from every node to every other node,
invoke the single source algorithm n times

= O(n®) computation time

UCONN

@ Heaps

A heap is a priority queue

e It allows finding the minimum element of a set and insertion
(enqueuer)/deletion (dequeuer) of elements is easy

« A d-heap is a d-ary tree (i.e., with at most d children),
= Each node contains one item

» Jtems are arranged in a heap order
= value at each node less than values at its children (if they exist)

- Example: 3-ary tree

Parent values < Children values

UCONN

¥# Inserting an element to a d-heap

» Easy to insert an element
= Suppose want to insert 7 into the heap
= Make a new vacant node x to the tree such that x is a leaf
= Storing 7 in X may violate heap order
= Use SIFT-UP procedure to place 7 at its proper place

DO while parent exceeds child’s value
Move parent to vacant node
Replace parent node by vacant node value

End DO
(2
19 29 ©
H @ ©® @ 6
&
(2
(7) 29 ©
B @ ® @ 6 @
(30

» Note that if inserted at node 9, it takes only one SIFT-UP. This can be done with the so-called
left-complete d-ary tree.

UCONN

7

Deleting an element from a d-heap

» Easy to delete an element

UCONN

Suppose we want to delete 7

Find a node y with no children

Remove item from the node (say, value is j = 30) and delete node y from the tree
If value j = 7 done!!

Otherwise remove 7 from the node and attempt to replace it by j

If (j < 7) use SIFT-UP process

Otherwise use SIFT-DOWN process

SIFT-DOWN

If value of parent exceeds the value of a child
Choose a child with minimum value
Store child in parent & parent in child

End if

When deleting an element, choose y that was most recently added ~ like stack (LIFO)

¥ Complexity of insert and delete operations in a d-heap

« Complexity of insert and delete operations in a d-heap
» Time for SIFT-UP depends on the depth of node at which SIFT-UP starts = insert = O(log, n)
» Time for SIFT-DOWN « total number of child nodes made vacant during SIFT-DOWN
= delete = O(d log, n)
* Time for minimum of the set of elements: O(1)
= If there are more inserts than deletes (as in shortest path for the set V), use d as large as
possible, i.e., use

d :[2+%W,m:# of edges, n = # of nodes

* Need no explicit pointers, if we number nodes in a breadth-first order

o Parentofx = [%

o Children of node x = (d(x — 1) + 2, ..., min(d(x + 1), n)
o eg.,

x =4, d= 3 = parent = 1; children = none
x =5, d= 3= parent = 2; children

none

x =3, d= 3= parent = 1; children = 8,9, 10 2 3 4

Index/1|2 |3 |[4]/5 |6 |7 |8 |9 |10
Key [2]16]/20]|9|30)22]| 18] 27|50| 60 5 6 4 8 9 10

UCONN

@ How to make d-heaps?

* Q: How to make heaps?
* One of two ways:
= Use insert n times = O(nlogyn)
= Create an arbitrary d-ary tree and execute SIFT-DOWN

“f%”ﬂ 0G6+3) _ 5
= d

» To learn more about heaps, read:
= J.W.J. Williams, “Algorithm232: Heapsort,” CACM, 7, 1964, pp. 347-348

D.B. Johnson, “Priority queues with update and finding minimum spanning trees,”
Inform. Proc. Letters, 4, 1, 1975, pp. 53-57

D.B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” JACM,
vol. 24, pp. 1-13
= R. Tarjan, Data Structures and Network Algorithms, SIAM, 1983

= E. Horowitz and S. Sahni, Computer Algorithms, CSP, 1978

 Application to shortest path
= Let out(i) = set of edges directed away from i
= n=4#of nodes, m = # of edges
= Node list V is in the form of a heap

UCONN

¥ 2 Heap implementation of Dijkstra’s Algorithm

s Vi=2,..,n
» parent(i) = null
=

* endV

e 4,=0

« parent(1) = null

« V={1}

e i=1

* while i #null do
= for(i,j) €out(i)and j# 1
o if(4>4+cy)
@ A=At
% parent(j) =i
@ if(jeV)

insert j into V

% else
SIFT-UPj
% endif
o endif
* end for
» i=delete min{V} ... finds the next minimum on the list by deleting the current minimum

« enddo
UCONN

@ Complexity of d-heap version of Dijkstra

* O(mlogyn)
. m
 Optimumd, d = [2 + ;l

» Considerable savings if m~O(n) = d~ 4 1
Heap
1 1 4
’ 5 %
—> —>

® @ @

2 3 4 2 3
4 3 2
@ @ . ©

® @ 6 O ® @ @ 3® ()

2 3 6 7 2 6 7

UCONN

@ Dial’s “bucket” method

* ¢;; are assumed to be nonnegative integers

* No loss in generality: one can always scale real c; to get integers to a
specified accuracy

» The possible label values range from 0 to (n — 1)C where

C= IT?&J_IX Ci
* So, for each possible label value, maintain a bucket and the
corresponding nodes with that label value

 Can use doubly-linked lists to maintain the set of nodes in a given
bucket
= List 1: <bucketb, # of nodes, first node in the bucket>
= List 2: <node #, node label, next node, previous node>

* Need to maintain only (C +1) buckets because when we are currently

searching bucket b, then all buckets beyond (b + C) are empty 4 <b and
Ci<C=>/4=4+Cc;<b+C

UCONN

@ IHlustration of Dial’s Bucket Method

)) buckets VoW
iteration \Y node labels 0111271 3 4 ode

1 {1} (0,0, 00, 00, 00, 00,) 1 - 1

2 {2,3, 4} (0,3,2,1, 00, 00, 0) 1143 2 - 4

3 {2,3,6, 7} 0,3,2,1, 0, 3,4) 114 (3|26 7 3

4 {2,6, 7} 0,3,2,1, 0, 3,4) 114 (3|26 7 2

5 {6,7,5} 0,3,2,1,4,3,4) 1143|2675 6

6 {7,5} 0,3,2,1,4,3,4) 1143|2675 7

7 {5} 0,3,2,1,4,3,4) 1143|2675 5

{0} 0,3,2,1,4,3,4) 1143|2675

e Refined versions. .. see references in Bertsekas’s book
= Alternate scanning strategies ... label correcting methods

« Recall that Dijkstra’s algorithm uses a best-first scanning

* What if we use breadth-first scanning?
= Scan the one least recently labelled or the first in the queue
= Idea behind the method was discovered by Moore (1959) and Bellman (1958)
= Improvements by D’Esopo and Pape (1980)

UCONN

@ Bellman-Moore-D’Esopo-Pape (BMDP) algorithm

* Vi=2,..,n
= parent(i) = null
= =00

e endV

- 4,=0

» parent(l) = null
* queue = [1]

» while queue # null do
» | =queue[l]
* queue = queue [2 - - -] initially queue = [@]
= for (i, j) € out(i)
o if (4 +c;<4)
A=t G
% parent(j) =i
s if (j € queue)
queue = queue U j
< endif
o endif
» end for

« enddo
UCONN

Y2 BMDP variations

« Unlike Dijkstra, a node may enter and leave the queue several times and may be scanned several
times

« Suppose a node that is in the queue (i.e., a labeled node) gets relabeled (i.e., its 1 is modified)
before it is scanned
» Where should we place it?
= Leave it where it was, when it first entered the queue

= Place it at the head of the queue if the node has already been entered, examined and removed
from the queue

= If the node has never entered the queue before (i.e., it was labelled for the first time), put it at
the end of the queue

« This is a hybrid scanning method, and was found to work very well in practice [Dial et al. (1979),
and Pape (1980)]

« Unlike Dijkstra, the algorithm is guaranteed to terminate even in the presence of
negative edge weights, as long as there is no cycle with an overall negative weight

- If have a cycle of negative weight, you will continue to be in the cycle and distance
monotonically decreases = primal is unbounded and dual is infeasible

» Each pass requires O(m) computation

» There can be at most (n — 1) passes if the network does not have cycles of negative length
= Worst-case computational load O(mn)
= In practice, they perform much better

* Detection of negative cycles

= If at the end of n passes, queue is not empty = 3 a cycle of negative length and can terminate
UCONN

@ Ilustration of BMDP Algorithm

« Dijkstra won’t work for negative edge weight problems!!

« Example
Problem Iteration 1
@ ()
3
1
queue = [1] queue = [2, 3]
Iteration 2 Iteration 3

1
queue = [3] queue = [4]

* Iteration 4: node 4 goes out = queue empty = done!!

UCONN

@ Remarks

 Performs very well in practice

 Can devise examples where a node may enter and exit the
candidate list an exponential number of times

e See:

= Kershenbaum, A., “A note on Finding Shortest Path Trees,”
Networks, vol. 11, pp. 399-400, 1981

« For variants, see:

= Bertsekas’s book

= S. Pallotino, “Shortest path methods: complexity, interrelationships,
and new propositions,” Networks, vol. 14, pp. 257-267, 1984

= G.S. Gallo and S. Pallotino, “Shortest path algorithms,” Annals of
Operations Research, vol. 7, pp. 3-79, 1988

UCONN

¥# Threshold algorithms

« Know that for graphs with positive arc weights, Dijkstra’s algorithm ensures that no
node is removed more than once

« Q:is it possible to emulate the minimum label selection policy of Dijkstra with a much
smaller computational effort?

« One answer: split V into two queues Q” and Q”
* Q’ =nodes with small labels = nodes with labels <s
* Q” =remaining

At each iteration
* Remove a node from Q’ and apply generic shortest path algorithm
* Any node to be added is added to Q”

* When Q’ is exhausted, repartition V into Q" and Q” with a new threshold

* Key: how to adjust thresholds?
» s = current minimum label = Dijkstra
* s> maximum label = BMDP algorithm
= Selection of s is an art
= See:

o F. Glover, D. Klingman, and N. Phillips, “A new polynomial bounded shortest path algorithm,”
Operations Research, vol. 33, pp. 65-73, 1985

o F. Glover, D. Klingman, N. Phillips, and R.F. Schneider, “New polynomial shortest path algorithms and
their computational attributes,” Management Science, vol. 31, pp. 1106-1128, 1985

UCONN

@ Summary

« Graph terminology
« Computer representation of graphs

* A generic shortest path algorithm for single origin-multiple
destinations problem

» Dijkstra’s algorithm ... label setting methods

= Heap implementation
= Dial’s bucket method

* Label correcting methods
= Bellman-Moore-D’Esopo-Pape algorithm
= Threshold algorithm

» Next: all pairs shortest path and distributed shorest path
algorithms ... Lecture 7

UCONN

