
Lecture 6:
Shortest Path Algorithms: (Part I)

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Graph terminology

• Computer representation of graphs

 Weight matrix or adjacency matrix

 List of edges

 Linked adjacency list

 Forward star

• Applications of shortest path problem

• A generic shortest path algorithm for single origin-
multiple destinations problem
 Dijkstra’s algorithm . . . label setting methods

o Heap implementation

o Dial’s bucket method

 Label correcting methods

o Bellman-Moore-D’Esopo-Pape algorithm

o Threshold algorithm

Graph terminology

VUGRAPH 3

• Graph G = (V, E)

 V = {v1, v2, . . . , vn} a finite set of vertices, nodes, junctions,
points, 0-cells, 0-simplices

 E = {e1, e2, . . . , em} a finite set of edges, arcs, links, branches,
elements, 1-cells, 1-simplices

 To each edge e, there corresponds two distinct vertices u and
v ⇒ e is incident on u, v

v1

v2

v3

v4

e1

e5

e6

e4

e5

e2

• Directed graph (or digraph) and undirected graph

 If vertex pairs are ordered, i.e., e is directed from vertex u to
vertex v, then the graph is called a diagraph

⇒ Direct edge <u, v>:

⇒ u is an immediate predecessor of v and v is an immediate
successor of u

 If the edges have no direction, then the graph is said to be an
undirected graph

⇒ Vertices are unordered

⇒ Undirected edge: (u, v)

 An undirected graph can be converted into a directed graph by
adding bi-directional edges

 We assume that there exists only one edge between two nodes in
one direction

Graph terminology

VUGRAPH 4

e i
u v

u v

Graph terminology

VUGRAPH 5

• Network
 A graph (directed or undirected) in which a real number is

associated with each edge  network = attributed graph

o If have multiple attributes, it is a multi-attributed graph or network

 This number is called the weight of the edge

 No loss in generality

o If a node has a weight, we can define a dummy node such that edge
from dummy node to node has a weight

• Degree of a vertex
 For an undirected graph G:

o d(v) = # of adjacent vertices or # of times v is an end point of edges

o Fact: # of nodes of odd degree in a finite undirected graph is even

o Proof:

 
1

2
n

i

i

d v m




Graph terminology

VUGRAPH 6

• Walk or a path

 For an undirected graph G:

o (v1, v2, . . . , vk) is a walk in an undirected graph G if (v1, v2), (v2, v3) ,
. . . , (vk–1, vk) are edges on the walk

 The walk is directed if each edge is directed (<>)

 Note that vertices may be repeated in a walk

• Simple path

 (v1, v2, . . . , vk) is a simple path if all vertices are distinct

 Directed simple path if all vertices are distinct and each edge is directed

• Cycle

 A path in an undirected graph is a cycle if k > 1 and v1 = vk and no
edge is repeated

 A path in a directed graph is a cycle if k > 1 and v1 = vk ... simple cycle
if vertices v1, v2, . . . , vk−1 are distinct

 A graph without cycles is acyclic

Graph terminology

VUGRAPH 7

• Connected graphs

 If there is a path from a vertex vi to a vertex vk, then vk is reachable from vi

 A graph G is connected if every vertex vk is reachable from every other
vertex vi, and disconnected otherwise

• Weight (length) of a path

 Given a path p = <v1, v2, . . . , vk>, we can speak of the length of the path or
the weight of the path

 Example: weight of path s → u → t:

1 2 2 3 1k kv v v v v vc c c


   

7su utc c 

u

s

v

t

2

4

5

3

1

Computer representation of graphs

VUGRAPH 8

• Four methods

 Weight matrix or adjacency matrix

 List of edges

 Linked adjacency list

 Forward star

• Weight matrix

 n nodes ⇒ n × n matrix C = [c i j]

 c i j ~ weight of edge <i, j>

 No edge ⇒ c i j = ∞ (e.g., 1020)

 c i i = 0

 Undirected network ⇒ C = CT symmetric ⇒ (
𝑛(𝑛−1)

2
) elements/words

 Directed network ⇒ n(n – 1) elements/words

SF

Denver

LA

New
Orleans

Miami

NY

Boston
Chicago

7

8

6

54

32

1

1000

1400

900

250

250

1500

15001200
800

1000

1700

300
1000

• List of edges

 Useful when the graph is sparse

⇒ # of edges 𝑚 ≪ 𝑛(𝑛 − 1)

 Needs three m vectors or a matrix A(m, 3)

b = [8, 5, 4, 6, 4, 3, 7, 6, 6, 3, 2, 5, 6]′

d = [1, 4, 5, 8, 3, 1, 8, 4, 7, 2, 1, 6, 5]′

c = [1700, 1500, 1500, 1400, 1200, 1000, 1000, 1000, 900, 800, 300, 250, 250]′

 Note the weights are in descending order

 You can start b, d or c list in any way you want

 It is convenient to start c as a heap for the shortest path problems ... more
on this later!!

List of edges representation of graphs

VUGRAPH 9

Start node list
(beginning node)

(1)

(2)

()

b

b

b m

End node list
(destination node)

Weight list

(1)

(2)

()

d

d

d m

(1)

(2)

()

c

c

c m

Linked adjacency list representation of graphs

VUGRAPH 10

• Linked adjacency list

• Easy to add or delete edges ⇒ change pointers to links

• Outlists of nodes

• Can also represent inlists of nodes

nil

Link
pointer

Pointer to edges

1 300 nil

2 800

3 1200

4 1500

5 250

6 1000 nil

7 1700 nil

1 1000

5 1500

6 250

4 1000 7 900

8 1400 nil

1

2

3

4

5

6

7

8

Destination node

Weight of edge

Next edge

(3m + n) words = 47 words

• Forward star (out-list)

 Useful when edges don’t have to be added or deleted

 It is not easy to add or delete edges

• Backward star

 Similar to forward star with in-list (incoming edges to a node)

Forward star representation of graphs

VUGRAPH 11

14

1

2

4

6

8

12

13

14

1

2

3

4

5

6

7

8

9

1

2

1

3

5

4

6

4

7

8

5

8

1

Pointer
Node i

End vertex Weight

300

800

1000

1200

1500

1500

250

1000

900

1400

250

1000

1700

Total words:
2m + n + 1 = 26 + 8 + 1 = 35

Shortest path problems

VUGRAPH 12

• We can define several path related problems using the above terminology

 Given any two nodes s and t, find the shortest path (i.e., minimum length path)
from s to t . . . single source - single destination shortest path problem

 Given a node v1 = s, find the shortest distances to all other nodes. . . single source -
multiple destination shortest path problem

 Shortest distance from every node to every other node . . . all pairs shortest path
problem . . . Lecture 7

• We also distinguish between problems where

 Edge weights (arc lengths) are nonnegative

 Edge weights can be negative

• Why do we solve these problems?

• Communication networks

 <vi, vk> in a communication network

 c <vi, vk> = average packet delay to traverse link <vi, vk>

 Shortest path ⇒ minimum cost route over which to send data or minimize delay of
route

 Average delay is a function of link traffic ... in fact, a nonlinear relationship

 However, shortest path problem is an integral part of most routing problems

Reliability networks

VUGRAPH 13

• c <vi, vk> = − ln p <vi, vk>

• p <vi, vk> = probability that a given arc (edge) <vi, vk> is
usable in the network

• Edges are assumed to be independent

• Most reliable path between s and t ⇒ find shortest distance
between nodes s and t with edge weights {− ln p <vi, vk>}

• Note: Reliability of a path 

1

1

1
,

1

,

max ,

min ln ,

i i

i i

i i
v v

i i

v v

p v v

p v v










 



 

  

  
⇒

PERT networks (critical path analysis)

VUGRAPH 14

• Nodes of subtasks, arcs (edges) ~ dependency

• tij = time required to complete j after i is completed

• <i, j> denotes precedence constraint that i must be completed before j
can begin

• Problem: find the most time consuming path

= longest (critical) path …. This is the one you want to monitor!

= shortest path with c(vi, vj) = –tij

• Viterbi decoding, discrete dynamic programming, etc.

i

j

• For simplicity, we denote nodes {1, 2, ... , n} and edges <i, j>
 Source = node 1

 Destination = node n, for single destination problem

• Dual of the shortest path problem
 Let us look at the shortest path problem from the viewpoint of the dual

 If we want shortest path to node n only

 If we want to find shortest paths to all nodes from node 1, replace objective
function by:

 CS conditions

o If P is the shortest path then

 λj = λi + cij, if <i, j> ∈ P

 λj ≤ λi + cij, ∀ <i, j> ∉ P

o {λi} are called labels of nodes

Dual of the shortest path problem

VUGRAPH 15

1

max

s.t. 0

 , ,

n

j i ij j i ijc c i j





   



       

2 3max{ }n    

+4

6

+3

4

43

2 4

53

1

5

2

Example

VUGRAPH 16

2 3 4 5

1

2 1

3 1

3 2

4 2

2 4

4 3

5 3

3 5

5 4

max{ }

s.t. 0

 5

 2

 3

 4

 3

 5

 4

 6

 4

   



 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

A generic relaxation (dual) procedure

VUGRAPH 17

• Initialize:

 Set λ1 = 0

 λi = ∞ (large #) ∀i = 2, 3, ... , n

 V = {1} ... candidate list

• Step 1:

 If all inequalities are satisfied

o Stop . . . found an optimal solution

 Else

o Remove a node i from the candidate list V

 End if

• Step 2:

 For each outgoing arc <i, j> with j ≠ 1,

o If λj – λi > cij

 Set λj = λi + cij ... labeling step

 Add j to V if it is not already in V

o End if

 Go back to Step 1

• Labels {λi} are monotonically nonincreasing

• λi < ∞ ⇔ node i has entered the candidate list V at least once

• The various implementations differ in the way they select the node from the candidate list V

Dijkstra’s way of picking the node to relax

VUGRAPH 18

• Pick a node with the minimum label

• Needs non-negativity of {cij} and graph connectivity for
convergence!!

• Implementation issues
 use binary heap to efficiently remove node i from V

 Dial’s “bucket” method ... see Bertsekas’s book

• A node enters V only once if cij ≥ 0

• These implementations are called “label setting”
methods or “best-first” scanning methods

arg min{ }j
j

i 

BMDP & Threshold Algorithms

VUGRAPH 19

• Bellman-Moore-D’Esopo-Pape (BMDP)

 Maintain a queue of nodes in the candidate list, V

 A node may enter V more than once!!

 Breadth-first scanning or label correcting methods

• Threshold algorithms ... see Bertsekas’s book

 Split queue into two queues Q′ and Q″, where labels of nodes in
Q′ are less than a threshold s

Dijkstra’s algorithm

VUGRAPH 20

• Dijkstra’s algorithm … assume cij > 0

• Step 1: initialization

 set λ1 = 0

 pred(1) = ∅

 λj = c1j for j = 2, ... , n

 pred(j) = 1 if cij < ∞

 set W = {∅}, V = {1}. . . W = {i : λi < ∞, i ∉ V } set of permanently labeled nodes

• Step 2: scanning and permanent labeling

 find i ∈ V , where λi = min{λj}, j ∈ V

 set V = V − {i}, W = W ∪ {i}

• Step 3: revision of tentative labels

 ∀ outgoing arc <i, j> with j ≠ 1

o if λj > λi + cij

pred(j) = i

λj = λi + cij

if (j V)

V = V ∪ {j}

end if

o end if

o if (V = ∅) stop ⇒ computation is completed

o else go to step 2

o end if



Illustration of Dijkstra’s Algorithm

VUGRAPH 21

• Iteration 1

 Node removed = 1 ⇒ W = {1}

 Labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = ∞, λ5 = ∞

 Node list: V = {2, 3}

• Iteration 2

 since λ3 < λ2, node removed from V = 3 ⇒ W = {1, 3}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = ∞, λ5 = 6

 node list: V = {2, 5}

• Iteration 3

 since λ2 < λ5, node removed from V = 2 ⇒ W = {1, 3, 2}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {4, 5}

• Iteration 4

 node removed from V = 5 ⇒ W = {1, 3, 2, 5}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {4}

• Iteration 5 ... no need to perform iteration 5 since labels of nodes in W will not change

 node removed from V = 4 ⇒ W = {1, 3, 2, 5, 4}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {∅}

+4

6

+3

4

43

2 4

53

1

5

2

Interpretations and proof of optimality

VUGRAPH 22

• Removing from V a minimum label node ⇒ W contains nodes with the
smallest labels

• At kth step, we have the set W of k closest nodes to node 1 as well as the
shortest distances {λi}iW from node 1 to each node i of W ⇒ λi ≤ λj if i ∈
W and j ∉W

• At each step, we add the next closest node into the set W

• Once a node enters W, it stays in W forever and labels of
nodes in W do not change ⇒ W can be interpreted as the set of
permanently labeled nodes

• Proof:
 Valid initially because node 1 exits and enters W

 Suppose valid for iteration (k − 1) ⇒ λi ≤ λj if i ∈ W and j ∉ W

 Since cpi ≥ 0, when a node p is removed from V and put in W, then ∀i ∈ W, we have λi

≤ λp + cpi ⇒ node i never enters V if it is already in W

⇒ W = set of permanently labeled nodes

⇒ Any label that changes must be from j ∉W

 At the end of the iteration, we have λj = λp + cpj ≥ λp ≥ λi, ∀i ∈W ⇒ W has nodes with
“small” labels

• (n − 1) iterations

• Each iteration, need to find minimum label ⇒ worst case n operations

• O(n2) operations

• Label revision: O(m) operations, m = # of arcs

• Since m ≤ n2, total computational load O(n2)

• Can do better with heaps and buckets for sparse graphs

• Look at shortest paths

 They form a tree called shortest path tree or skim tree

 Spanning tree: tree containing all the vertices

 If want to find shortest paths from every node to every other node,
invoke the single source algorithm n times

⇒ O(n3) computation time

Computational load and skim tree

VUGRAPH 23

3

5

1

2

4

Heaps

VUGRAPH 24

• A heap is a priority queue

• It allows finding the minimum element of a set and insertion
(enqueuer)/deletion (dequeuer) of elements is easy

• A d-heap is a d-ary tree (i.e., with at most d children),
 Each node contains one item

 Items are arranged in a heap order

⇒ value at each node less than values at its children (if they exist)

• Example: 3-ary tree

2

16 20 9

30 22 18 27 50 60

Parent values ≤ Children values

• Easy to insert an element

 Suppose want to insert 7 into the heap

 Make a new vacant node x to the tree such that x is a leaf

 Storing 7 in x may violate heap order

 Use SIFT-UP procedure to place 7 at its proper place

 Note that if inserted at node 9, it takes only one SIFT-UP. This can be done with the so-called
left-complete d-ary tree.

Inserting an element to a d-heap

VUGRAPH 25

DO while parent exceeds child’s value
Move parent to vacant node
Replace parent node by vacant node value

End DO

2

1 6 2 0 9

30 22 18 27 50 60

2

1 6 2 0 9

7 22 18 27 50 60

2

7 2 0 9

16 22 18 27 50 60

30x 7

30

Deleting an element from a d-heap

VUGRAPH 26

• Easy to delete an element

 Suppose we want to delete 7

 Find a node y with no children

 Remove item from the node (say, value is j = 30) and delete node y from the tree

 If value j = 7 done!!

 Otherwise remove 7 from the node and attempt to replace it by j

 If (j < 7) use SIFT-UP process

 Otherwise use SIFT-DOWN process

 SIFT-DOWN

 When deleting an element, choose y that was most recently added ∼ like stack (LIFO)

If value of parent exceeds the value of a child
Choose a child with minimum value
Store child in parent & parent in child

End if

2

1 6 2 0 9

30 22 18 27 50 60

2

2 0 9

16 22 18 27 50 60

2

7 2 0 9

16 22 18 27 50 60
30

30

Use SIFT-DOWN

Complexity of insert and delete operations in a d-heap

VUGRAPH 27

• Complexity of insert and delete operations in a d-heap

 Time for SIFT-UP depends on the depth of node at which SIFT-UP starts ⇒ insert = O(logd n)

 Time for SIFT-DOWN ∝ total number of child nodes made vacant during SIFT-DOWN

⇒ delete = O(d logd n)

 Time for minimum of the set of elements: O(1)

 If there are more inserts than deletes (as in shortest path for the set V), use d as large as
possible, i.e., use

 Need no explicit pointers, if we number nodes in a breadth-first order

o Parent of 𝑥 =
𝑥−1

𝑑

o Children of node x = (d(x − 1) + 2, . . . , min(d(x + 1), n)

o e.g.,

2 , # of edges, = # of nodes
m

d m n
n

 
    

x = 4, d = 3 ⇒ parent = 1; children = none

x = 5, d = 3 ⇒ parent = 2; children = none

x = 3, d = 3 ⇒ parent = 1; children = 8, 9, 10 2

1

3 4

5 6 7 8 9 10
Index 1 2 3 4 5 6 7 8 9 10

Key 2 16 20 9 30 22 18 27 50 60

• Q: How to make heaps?
• One of two ways:

 Use insert n times ⇒ O(nlogdn)

 Create an arbitrary d-ary tree and execute SIFT-DOWN

• To learn more about heaps, read:
 J.W.J. Williams, “Algorithm232: Heapsort,” CACM, 7, 1964, pp. 347-348

 D.B. Johnson, “Priority queues with update and finding minimum spanning trees,”
Inform. Proc. Letters, 4, 1, 1975, pp. 53-57

 D.B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” JACM,
vol. 24, pp. 1-13

 R. Tarjan, Data Structures and Network Algorithms, SIAM, 1983

 E. Horowitz and S. Sahni, Computer Algorithms, CSP, 1978

• Application to shortest path
 Let out(i) = set of edges directed away from i

 n = # of nodes, m = # of edges

 Node list V is in the form of a heap

How to make d-heaps?

VUGRAPH 28

log ()

0

(1)
()

d n

i
i

n i
O n

d

  






Heap implementation of Dijkstra’s Algorithm

VUGRAPH 29

• ∀i = 2, ... , n

 parent(i) = null

 λi = ∞

• end ∀

• λ1 = 0

• parent(1) = null

• V = {1}

• i = 1

• while i ≠ null do

 for (i, j) ∈ out(i) and j ≠ 1

o if (λj > λi + cij)

 λj = λi + cij

 parent(j) = i

 if (j V)

insert j into V

 else

SIFT-UP j

 end if

o end if

 end for

 i = delete min{V} ... finds the next minimum on the list by deleting the current minimum

• end do



Complexity of d-heap version of Dijkstra

VUGRAPH 30

• O(mlogdn)

• Optimum d, d = 2 +
𝑚

𝑛

• Considerable savings if m ≈ O(n) ⇒ d ≈ 4

0

1

0

3 2 1

1

2 3 4

1

3 2

4

2 3

1

3 2 3

4

2 3 6

4

7

2

3 3 4

3

2 6 7

3

3 4

2

6 7

3

3 4 4

2

6 7 5

3

4 4

6

7 5

4

4

7

5

Heap

4

1

2
5

7
3

3

1

2

2

3

2

5

1

2

1

6

6

Dial’s “bucket” method

VUGRAPH 31

• cij are assumed to be nonnegative integers

• No loss in generality: one can always scale real cij to get integers to a
specified accuracy

• The possible label values range from 0 to (n − 1)C where

• So, for each possible label value, maintain a bucket and the
corresponding nodes with that label value

• Can use doubly-linked lists to maintain the set of nodes in a given
bucket
 List 1: <bucket b, # of nodes, first node in the bucket>

 List 2: <node #, node label, next node, previous node>

• Need to maintain only (C +1) buckets because when we are currently
searching bucket b, then all buckets beyond (b + C) are empty λi ≤ b and
cij ≤ C ⇒ λj = λi + cij ≤ b + C

,
max ij

i j
C c

Illustration of Dial’s Bucket Method

VUGRAPH 32

• Refined versions . . . see references in Bertsekas’s book
 Alternate scanning strategies ... label correcting methods

• Recall that Dijkstra’s algorithm uses a best-first scanning

• What if we use breadth-first scanning?
 Scan the one least recently labelled or the first in the queue

 Idea behind the method was discovered by Moore (1959) and Bellman (1958)

 Improvements by D’Esopo and Pape (1980)

iteration V node labels
buckets V → W

node0 1 2 3 4

1 {1} (0,∞, ∞, ∞, ∞, ∞, ∞) 1 - - - - 1

2 {2, 3, 4} (0,3,2,1, ∞, ∞, ∞) 1 4 3 2 - 4

3 {2, 3, 6, 7} (0,3,2,1, ∞, 3,4) 1 4 3 2, 6 7 3

4 {2, 6, 7} (0,3,2,1, ∞, 3,4) 1 4 3 2, 6 7 2

5 {6, 7, 5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 6

6 {7, 5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 7

7 {5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 5

{∅} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5

Bellman-Moore-D’Esopo-Pape (BMDP) algorithm

VUGRAPH 33

• ∀i = 2, ... , n

 parent(i) = null

 λi = ∞

• end ∀

• λ1 = 0

• parent(1) = null

• queue = [1]

• while queue ≠ null do

 i = queue[1]

 queue = queue [2 · · ·] initially queue = [∅]

 for (i, j) ∈ out(i)

o if (λi + cij < λj)

 λj = λi + cij

 parent(j) = i

 if (j ∉ queue)

queue = queue ∪ j

 end if

o end if

 end for

• end do

BMDP variations

VUGRAPH 34

• Unlike Dijkstra, a node may enter and leave the queue several times and may be scanned several
times

• Suppose a node that is in the queue (i.e., a labeled node) gets relabeled (i.e., its λ is modified)
before it is scanned

• Where should we place it?

 Leave it where it was, when it first entered the queue

 Place it at the head of the queue if the node has already been entered, examined and removed
from the queue

 If the node has never entered the queue before (i.e., it was labelled for the first time), put it at
the end of the queue

• This is a hybrid scanning method, and was found to work very well in practice [Dial et al. (1979),
and Pape (1980)]

• Unlike Dijkstra, the algorithm is guaranteed to terminate even in the presence of
negative edge weights, as long as there is no cycle with an overall negative weight

• If have a cycle of negative weight, you will continue to be in the cycle and distance
monotonically decreases ⇒ primal is unbounded and dual is infeasible

• Each pass requires O(m) computation

• There can be at most (n − 1) passes if the network does not have cycles of negative length

⇒ Worst-case computational load O(mn)

⇒ In practice, they perform much better

• Detection of negative cycles

 If at the end of n passes, queue is not empty ⇒ ∃ a cycle of negative length and can terminate

Illustration of BMDP Algorithm

VUGRAPH 35

• Dijkstra won’t work for negative edge weight problems!!

• Example

• Iteration 4: node 4 goes out ⇒ queue empty ⇒ done!!

1

-2

43

3 4

21

-1

Problem

queue = [1]

1

(∞)

3

3 4

21

Iteration 1

queue = [2, 3]

1

3

21

-1

Iteration 2

queue = [3]

1

-2
3 4

21

-1

Iteration 3

queue = [4]

Remarks

VUGRAPH 36

• Performs very well in practice

• Can devise examples where a node may enter and exit the
candidate list an exponential number of times

• See:
 Kershenbaum, A., “A note on Finding Shortest Path Trees,”

Networks, vol. 11, pp. 399-400, 1981

• For variants, see:
 Bertsekas’s book

 S. Pallotino, “Shortest path methods: complexity, interrelationships,
and new propositions,” Networks, vol. 14, pp. 257-267, 1984

 G.S. Gallo and S. Pallotino, “Shortest path algorithms,” Annals of
Operations Research, vol. 7, pp. 3-79, 1988

Threshold algorithms

VUGRAPH 37

• Know that for graphs with positive arc weights, Dijkstra’s algorithm ensures that no
node is removed more than once

• Q: is it possible to emulate the minimum label selection policy of Dijkstra with a much
smaller computational effort?

• One answer: split V into two queues Q′ and Q″

 Q′ = nodes with small labels ⇒ nodes with labels ≤ s

 Q″ = remaining

• At each iteration

 Remove a node from Q′ and apply generic shortest path algorithm

 Any node to be added is added to Q″

• When Q′ is exhausted, repartition V into Q′ and Q″ with a new threshold

• Key: how to adjust thresholds?

 s = current minimum label ⇒ Dijkstra

 s > maximum label ⇒ BMDP algorithm

 Selection of s is an art

 See:

o F. Glover, D. Klingman, and N. Phillips, “A new polynomial bounded shortest path algorithm,”
Operations Research, vol. 33, pp. 65-73, 1985

o F. Glover, D. Klingman, N. Phillips, and R.F. Schneider, “New polynomial shortest path algorithms and
their computational attributes,” Management Science, vol. 31, pp. 1106-1128, 1985

Summary

VUGRAPH 38

• Graph terminology

• Computer representation of graphs

• A generic shortest path algorithm for single origin-multiple
destinations problem

• Dijkstra’s algorithm ... label setting methods
 Heap implementation

 Dial’s bucket method

• Label correcting methods
 Bellman-Moore-D’Esopo-Pape algorithm

 Threshold algorithm

• Next: all pairs shortest path and distributed shorest path
algorithms ... Lecture 7

