Lecture 9:
Maximum Flow in a Network

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890
Outline

• LP formulation and its dual
 ▪ Maximum flow = Minimum cut
 ▪ A historical perspective on maximum flow algorithms

• Ford-Fulkerson labeling algorithm

• Dinic-Malhotra-Pramodh Kumar-Maheswari (DMKM) algorithm
 ▪ Push-pull algorithm
 ▪ Wave method

• Applications of maximum flow
 ▪ Mapping problem
 ▪ PERT networks
Preliminaries

- Suppose have a graph $G = \langle V, E \rangle$ with two distinguished (designated) nodes s and t
 - $s =$ source node; $t =$ terminal node

- Consider edge between nodes i and j
 - Edge $\langle i, j \rangle$ permits flow in both directions . . . undirected
 - Edge $\langle i, j \rangle$ has a capacity c_{ij} in the forward direction and c_{ji} in the backward direction
 - $c_{ij} \geq 0$ and $c_{ji} \geq 0$
 - Usually, we assume $c_{ij} = c_{ji}$ (symmetric)
 - Edge $\langle i, j \rangle$ permits flow from node i to node j only
 - Capacity $c_{ij} \geq 0$
 - $c_{ji} = 0 \rightarrow$ no flow allowed in reverse direction

- Since any undirected graph can be converted into a directed graph, we assume that G is directed
Preliminaries

• Let \(x_{ij} \) be the flow of commodity (oil, messages, vehicles) from \(i \) to \(j \)
 - By definition \(x_{ji} = -x_{ij} \) → flow matrix is *skew symmetric*
• \(x_{ij} \leq c_{ij} \) and \(x_{ji} \leq c_{ji} \) → flows satisfy *capacity constraints*
• For any \(<i, j> \) if \(x_{ij} = c_{ij} \) or \(x_{ji} = c_{ji} \) ⇒ edge \(<i, j> \) is *saturated*
• If don't have an edge \(<i, j> \) ⇒ \(c_{ij} = c_{ji} = x_{ij} = x_{ji} = 0 \)
• We can also look at flows in a network in terms of *path flows*
 - Indeed, we can establish an equivalence between arc flows and path flows
 - Let \(P \) be the set of paths in the network
 - Let \(y_p \) be the flow on path \(p \)

Let \(\delta_{ij}(p) = \begin{cases} 1 & \text{if arc } <i, j> \text{ is on path } p \\ 0 & \text{otherwise} \end{cases} \) \(\Rightarrow \)

\[
x_{ij} = \sum_{p \in P} y_p \delta_{ij}(p)
\]
Conservation of Flow

- Flow conservation constraints
 - \forall node $i \neq s, t$, we have
 \[
 \sum_{j=1}^{n} x_{ji} \equiv \sum_{k=1}^{n} x_{ik} \forall i \neq s, t
 \]

- Flow in the network
 \[
 f = \sum_{i=1}^{n} x_{si} - \sum_{k=1}^{n} x_{ks} \quad \text{... net flow out of source}
 \]
 \[
 \text{(or)} \quad f = \sum_{k=1}^{n} x_{kt} - \sum_{i=1}^{n} x_{ti} \quad \text{... net flow into sink}
 \]

- Max. flow problem:
 - Want to find the maximum flow that the network can sustain from s to t
 - What is the capacity of the network?
Max. flow problem

- LP formulation

$$\begin{align*}
\text{max } & \quad f \\
\text{s.t. } & \quad \sum_{i=1}^{n} x_{si} - \sum_{k=1}^{n} x_{ks} - f = 0 \quad \text{(source flow)} \\
& \quad \sum_{j=1}^{n} x_{ij} - \sum_{k=1}^{n} x_{ki} = 0, \quad \forall i \neq s, t \quad \text{(Kirchoff's law)} \\
& \quad -\sum_{k=1}^{n} x_{kt} + \sum_{i=1}^{n} x_{li} + f = 0 \quad \text{(sink flow)} \\
& \quad 0 \leq x_{ij} \leq c_{ij} \quad \text{(capacity constraints)}
\end{align*}$$

- Example:
Capacity of a cut

• Capacities provide a bound on the flow
• At the source: can’t send more than \((5 + 7 + 9) = 21\) units
• Can’t send this because at the sink: can’t receive more than \((6 + 8 + 5) = 19\) units
• Can't send 19 units either because at the center: can't move more than \((14 + 1 + 1) = 16\) units
• What we have defined are three cuts
 - Cut \(\equiv\) A partition (or separation) of nodes into two groups \(W\) and \(T\) such that \(s \in W\) and \(t \in T = \bar{W}\)
 - Capacity of the cut is the sum of capacity of edges crossing from \(W\) to \(T\)

\[
C(W, \bar{W}) = \sum_{\langle i, j \rangle \in E: \quad i \in W, j \in \bar{W}} c_{ij}
\]

\[
\begin{aligned}
\text{cut at the source: } & 21 \\
\text{cut at the sink: } & 19 \\
\text{cut in the middle: } & 16
\end{aligned}
\]
Max Flow ≡ Min cut

- Know $f \leq C(W, \bar{W}), \forall (W, \bar{W})$ cut
 - Can’t push through 16 units either!!
- Cut (4) → $7 + 2 + 1 + 2 + 1 = 13$
 - Can’t push through 13 units either!!
- Cut (5) → $1 + 1 + 8 + 1 + 1 = 12$
 - Cut(5) → $W = \{s, a, b, c, e\}; \bar{W} = \{t, d, f\}$

- Property of a cut
 - Each cut corresponds to a feasible solution of the dual of max. flow problem ...later
 - Properties of cut(5):
 - Every forward edge across the cut is saturated
 - It is a cut of maximum capacity
 → Max. flow = min cut (?)
 ...Recall dual is a minimization problem!!
Some observations from example

- Minimum cut is not unique
 - Min. cut is not unique: e.g., if $14 \rightarrow 10$
 \Rightarrow a second min. cut

- Maximum flow pattern is not unique
 - Max. flow pattern is not unique. Degenerate bfs
 - Max. flow value $f = 12$ is unique: cap. of min cut is unique
Establishing feasibility

• Let us look at the dual to establish feasibility

Primal

\[
\begin{align*}
\text{min} \quad f & \\
\text{s.t.} \quad \sum_{i=1}^{n} x_{si} - \sum_{k=1}^{n} x_{ks} - f &= 0 \\
\sum_{j=1}^{n} x_{ij} - \sum_{k=1}^{n} x_{ki} &= 0, \ \forall i \neq s, t \\
\sum_{i=1}^{n} x_{ti} + \sum_{k=1}^{n} x_{kt} + f &= 0 \\
-x_{ij} & \geq -c_{ij}, \ x_{ij} \geq 0
\end{align*}
\]

Dual

\[
\begin{align*}
\text{max} \quad - \sum_{<i, j> \in E} \mu_{ij} c_{ij} &= \min \sum_{<i, j> \in E} \mu_{ij} c_{ij} \\
\text{s.t.} \quad -\gamma_{s} + \gamma_{t} & \leq -1 \\
\gamma_{i} - \gamma_{j} - \mu_{ij} & \leq 0 \\
\gamma_{i} & \text{ unconstrained} \\
\mu_{ij} & \geq 0
\end{align*}
\]

• Let \(\gamma_{i} = -\lambda_{i}, \ \forall i \)

• Final Dual form

\[
\Rightarrow \min \sum_{<i, j> \in E} \mu_{ij} c_{ij}
\]

\[
\begin{align*}
\text{s.t.} \quad \lambda_{t} - \lambda_{s} & \geq 1 \\
\lambda_{i} - \lambda_{j} + \mu_{ij} & \geq 0 \Rightarrow \lambda_{j} - \lambda_{i} \leq \mu_{ij} \\
\mu_{ij} & \geq 0
\end{align*}
\]
Establishing dual feasibility of a cut

• Every $s-t$ cut (W, \overline{W}) determines a dual feasible solution with cost $C(W, \overline{W})$ as follows:

\[
\mu_{ij} = \begin{cases}
1 & i \in W; j \in \overline{W} \\
0 & \text{otherwise}
\end{cases}
\]

\[
\Rightarrow \sum_{<i,j> \in E} \mu_{ij}c_{ij} = \sum_{<i,j> \in E} c_{ij} = C(W, \overline{W})
\]

\[
\lambda_i = \begin{cases}
0 & i \in W \\
1 & i \in \overline{W}
\end{cases} \quad \text{dual feasible}
\]

\[
i \in W, j \in W : \text{OK}
\]
\[
i \in \overline{W}, j \in \overline{W} : \text{OK}
\]
\[
i \in W, j \in \overline{W} : \text{OK}
\]
\[
i \in \overline{W}, j \in W : \text{OK}
\]

\[
\Rightarrow \text{feasible}
\]

• \Rightarrow note that $\lambda_t = 1$ and $\lambda_s = 0$ always
Max. flow \equiv Min. cut

- Flow x_{ij}^* and (W, \overline{W}) are jointly optimal iff
 - $x_{ij}^* = 0, \forall <i,j> \in E \ni i \in \overline{W}$ and $j \in W$
 \Rightarrow Zero flows on backward arcs
 - $x_{ij} = c_{ij}, \forall <i,j> \in E \ni i \in W$ and $j \in \overline{W}$
 \Rightarrow Saturated flows on forward arcs
- If $i \in \overline{W}$ and $j \in W$
 $\Rightarrow \lambda_i - \lambda_j + \mu_{ij} = 1 - 0 + 0 = 1 > 0 \Rightarrow x_{ij}^* = 0$
- If $i \in W$ and $j \in \overline{W}$
 $\Rightarrow \lambda_i - \lambda_j + \mu_{ij} = 0 - 1 + 1 = 0 \Rightarrow x_{ij}^* = c_{ij}$
- To see this duality more clearly, consider a graph with $c_{ij} = c_{ji} = 1$
- Minimal cut \equiv smallest number of edges across it \equiv # of edges from W to \overline{W}
- Maximal flow \equiv # of disjoint paths from s to t
 \Rightarrow Max. # of disjoint paths from s to t \equiv min. # of edges across a cut (or)
 \Rightarrow Capacity of a network \equiv sum of capacities of its weakest links
Historical perspective on max. flow algorithms

<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>Ford & Fulkerson</td>
<td>can be exponential</td>
</tr>
<tr>
<td>1969</td>
<td>Edmonds & Karp</td>
<td>$O(nm^2)$</td>
</tr>
<tr>
<td>1970</td>
<td>Dinic</td>
<td>$O(n^2 m)$</td>
</tr>
<tr>
<td>1974</td>
<td>Karzanov</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1978</td>
<td>Malhotra, Kumar, Maheswari</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1977</td>
<td>Cherkaski</td>
<td>$O(n^2 m^{1/2})$</td>
</tr>
<tr>
<td>1978</td>
<td>Galil</td>
<td>$O(n^{5/3} m^{1/2})$</td>
</tr>
<tr>
<td>1979</td>
<td>Galil, Naamad, Shiloach</td>
<td>$O(nm (\log n)^2)$</td>
</tr>
<tr>
<td>1980</td>
<td>Sleator & Tarjan</td>
<td>$O(nm \log n)$</td>
</tr>
<tr>
<td>1986,87</td>
<td>Goldberg & Tarjan</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1987</td>
<td>Bertsekas</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1989</td>
<td>Ahuja & Orlin</td>
<td>survey of max. flow algorithms</td>
</tr>
</tbody>
</table>
Historical perspective on max. flow algorithms

• Ford-Fulkerson & Edmonds & Karp
 ▪ Try to push flow on one path at a time called an augmentation path
 ▪ If can't find a path from s to t, we are done!!

• Other algorithms
 ▪ Several paths at once
 ▪ We construct a series of layered Networks
 ▪ If can't construct a layered network from $s - t$, we are done!

• More recent algorithms
 ▪ Work on arcs \Rightarrow distributed computation
Idea of Ford-Fulkerson labeling algorithm

• Ford-Fulkerson labeling algorithm
 ▪ Given: a directed graph $G = <V,E>$ and a feasible flow (x_{ij})
 ▪ An *augmentation path* (or augmenting path) p is a path from s to t in the undirected graph resulting from G by ignoring edge directions with the following properties:
 o $\forall <i,j> \in E$ that is traversed by P in the forward direction (called forward arc $<i,j>$ or forward labeling of j), we have
 $$x_{ij} < c_{ij} \rightarrow x_{ij} \uparrow \begin{cases} \text{we can forward label } j \text{ if} \\ \bullet i \text{ is labeled and } j \text{ is not} \\ \bullet x_{ij} < c_{ij} \end{cases}$$
 o $\forall (j,i) \in E$ that is traversed by P in the backward direction (called backward labeling of j), we have
 $$x_{ji} > 0 \rightarrow x_{ji} \downarrow \begin{cases} \text{we can backward label } j \text{ if} \\ \bullet i \text{ is labeled and } j \text{ is not} \\ \bullet x_{ji} > 0 \end{cases}$$

This idea is similar to Hungarian algorithm for the assignment problem
Example

- We can increase the flow on the augmenting path p until we violate the capacity constraint of a forward arc or empty a backward arc.

\[
\delta = \min_{(i,j) \in P} \begin{cases}
 c_{ij} - x_{ij} & \text{for forward arcs} \\
 x_{ji} & \text{for backward arcs}
\end{cases}
\]

\[
\delta = \begin{cases}
 9 & \rightarrow \delta = 4
\end{cases}
\]
How to find augmentation paths?

- We propagate *labels* from *s* to *t* or get stuck
- Each node *i* has a two part label: \(\text{label}(i) = < L_i, F_i > \)
 - \(L_i = \) from where *i* was labeled
 - Parent of *i* for forward arc
 - Son of *i* for backward arc
 - \(F_i = \) amount of extra flow that can be brought to *i* from *s*

When label all nodes adjacent to *i*, we are said to scan *i*

- We add all nodes labeled by scanning *i* to a LIST
 - So, to find augmenting path, scan *s* \(\rightarrow \) add to LIST all nodes labeled from *i* \(\rightarrow \) pick a node from LIST

- Outcome
 - *t* gets labeled \(\Rightarrow \) found an augmentation path
 - LIST becomes empty \(\Rightarrow \) can't find a path \(\Rightarrow \) optimal
Algorithm Procedure

∀i,j ∈ E, let x_{ij} = 0
repeat
 set all labels to 0; LIST = \{s\}
 while LIST ≠ ∅ do
 pick any node i ∈ LIST and remove it
 scan i ⇒ add to list all nodes on augmenting path
 if t is labeled
 augment flow x_{ij}
 goto repeat
 end if
 end do
end repeat

- What does scan i mean?
- Procedure scan i
 - Label forward to all unlabeled nodes adjacent to i by arcs that are unsaturated, putting newly labeled nodes on LIST
 - Label backward to all unlabeled nodes from which i is adjacent by arcs that have positive flows, putting newly labeled nodes on LIST
Example

- Example

```
augmenting path: s-c-b-t
```

```
⇒ max. flow = 10
```

```
augmenting path: s-a-b-c-d-t
```
Cost analysis

- When c_{ij} are integers \Rightarrow Ford-Fulkerson takes at most f augmentations

\[\langle s \ u \ v \ t \rangle \rightarrow \langle s \ v \ u \ t \rangle \rightarrow \langle s \ u \ v \ t \rangle \rightarrow \cdots \rightarrow 2M \text{ iterations} \]

- When c_{ij} are rational
 - Write as ratio of integers with a common denominator D
 - Scale each cost by $D \Rightarrow$ takes at most Df iterations

- When c_{ij} are irrational (of infinite precision), Ford-Fulkerson may not terminate
 - In fact, may converge to a non-optimal value
 - **If use shortest augmenting path, all these problems go away** \ldots In fact, Edmonds & Karp showed that the # of augmenting paths $\leq \frac{n(n^2-1)}{4}$ with this strategy (\exists even better algorithms)
Pathological Example (Ford and Fulkerson, 1962)

\[<x_i, y_i> = \text{arcs } A_i \]

\[A_1 = a_0 = 1 \]

\[A_2 = a_1 = \frac{\sqrt{5} - 1}{2} = 0.618... = \sigma \]

\[A_3 = a_2 = a_0 - a_1 = \sigma^2 \]

\[A_4 = a_2 = a_0 - a_1 = \sigma^2 \]

All other arcs have capacity \(s = \frac{1}{1 - \sigma} \)

In general, for this network, at the \(n^{th} \) Step, flow augmentation will be \(a_{n+1} \) and \(a_{n+2} \) such that

\[a_{n+2} = a_n - a_{n+1} \]
• At step \(n \) ... add \(a_{n+1} \) & \(a_{n+2} \)

\[
\Rightarrow a_0 + (a_1 + a_2) + \cdots + (a_{n+1} + a_{n+2}) = \frac{1}{1-\sigma} = s
\]

• Start with \(\langle s \ x_1 \ y_1 \ t \rangle \Rightarrow \langle A_1 \ A_2 \ A_3 \ A_4 \rangle = \langle 0 \ a_1 \ a_2 \ a_2 \rangle \Rightarrow \) flow \(a_0 \)

• At step \(n(n \geq 1) \):
 - Suppose at step \(n \), we order arcs \(A'_1, A'_2, A'_3, A'_4 \) \(\ni \) residual capacities are: \(0, a_n, a_{n+1}, a_{n+1} \), respectively
 - Order \(<x'_i, y'_i> \) accordingly
 - Flow so far: \(a_0 + a_1 + \cdots + a_{n-1} \)

• Step: \(n \) (a):
 - Choose flow augmenting path
 \(\Rightarrow \) Residual cap: \(0, a_{n+2}, 0, a_{n+1} \), respectively

Pathological Example (Ford and Fulkerson, 1962)
Pathological Example (Ford and Fulkerson, 1962)

• Step: \(n - b \):
 ▪ Choose flow augmenting path
 \[\Rightarrow a_{n+2}, 0, a_{n+2}, a_{n+1} \]
 \[\Rightarrow \text{Flow so far: } a_0 + a_1 + \cdots + a_n \]
 \[\Rightarrow \text{Step } n \text{ ends with appropriate residual capacities for step } (n+1) \]

As \(n \to \infty \), flow converges to \(s = \frac{1}{1-a_1} = \frac{1}{1-\sigma} = s \)

• However, max. flow = 4s

• Ford-Fulkerson terminates with non-optimal flows!!
DMKM Algorithm

• Two phase algorithm executed iteratively
 • Phase 1
 ▪ Obtain an auxiliary layered network (i.e., an acyclic graph) from the original network G with a feasible flow pattern
 • Phase 2
 ▪ Find *saturating flow* in a layered network . . . also called *blocking flows*
 ▪ Phase 2 takes $O(n^2)$ or $O(m \log n)$ steps depending on implementation
 • We will show that phase 1 need be executed at most n times
 $\Rightarrow O(n^3)$ or $O(mn \log n)$ steps for the algorithm
DMKM Algorithm (Phase 2)

• Consider phase 2 first
 ▪ Want to find saturation flows in a layered network
 ▪ What is a layered network?
 o An acyclic graph $G_L = < V_L, E_L > \ni V_L$ is partitioned into layers V_0, V_1, \cdots, V_L
 o $V_0 = \{s\}$, $V_1 =$ set of nodes adjacent to s
 o $V_k =$ set of nodes adjacent to all nodes of V_{k-1}, $k \geq 1$
 o Finally, $V_L = \{t\}$

How to find saturating flows?
DMKM Algorithm (Phase 2)

- Repeat until s and t are disconnected
 - Saturate some of the edges
 - Remove edges (& nodes if either all incoming or outgoing edges are saturated)

- The process is called “finding saturating flows” or “finding blocking flows”

- Two algorithms for finding blocking flows
 - “Push-pull" algorithm
 - Wave method
DMKM Algorithm (Phase 2)

“Push-pull method”
- Define throughput of a node i, $i \neq s, t$ as:
 \[TP_i = \min \left\{ \sum_{(k,i) \in E} (c_{ki} - x_{ki}), \sum_{(i,j) \in E} (c_{ij} - x_{ij}) \right\} \]
 \[= \min\{\text{potential input to } i, \text{ potential output from } i\} \]
- Similarly
 \[TP_s = \sum_{(s,i) \in E} (c_{si} - x_{si}); TP_t = \sum_{(k,t) \in E} (c_{kt} - x_{kt}) \]
- Suppose
 \[TP_r = \min TP_i \& r = \arg \min_i TP_i \]
- r is called the reference node

For the example problem

\[TP_s = 7, TP_a = 3, TP_b = 3, TP_c = 3, TP_d = 3, TP_t = 7 \]
\[r = a \text{ or } b \text{ or } c \text{ or } d \]

Key: guaranteed at least TP_r units of flow from s to t

Q: How to “pull” TP_r units of flow from s to t & how to “push” TP_r units from r to t?
DMKM Algorithm (Phase 2)

• “Push” TP_r units from r to t
 ▪ Distribute TP_r units to the outgoing edges from r
 ○ Take these edges one by one & saturate them until all TP_r units are exhausted
 ○ Flow reaching the next layer is distributed among its outgoing edges & pushed to the next layer

• Example:
 ▪ Pick $r = a$

```
s  ↓ 4,0  →  b  ↓ 3,0  →  d  ↓ 3,2  →  t
  ↑ 3,0  ←  a  ↓ 3,1  ←  c
  ↓ 2,2  ←  b
  ↑ 4,1  ←  c
```

•
DMKM Algorithm (Phase 2)

• “Pull” TP_r units from s to r
 ▪ Pull TP_r from immediate predecessors of r
 ▪ Then from their immediate predecessors & so on

• Example:

```graph
s  4,0  b  3,0  d  3,2
  \ /   \ /   \ /   \ /
3,3  2,2  3,1  4,1
   a
  \ /   \ /
1,3  t
```

• Delete all saturated edges & nodes that have all their incoming or outgoing edges saturated
 ▪ Deletion of a node ⇒ deletion of all its incoming or outgoing edges
DMKM Algorithm (Phase 2)

• Result

\[
TP_s = 4 \\
TP_b = 3 \\
TP_d = 1
\]

⇒ Saturating flow = 4, since \(s\) and \(t\) are disconnected

• Note: saturating flow ≠ maximum flow
DMKM Algorithm (Phase 1)

• Phase 1 ... construct a layered network from a graph with a feasible flow pattern
 ▪ We do it in two steps
 o Construct a network \(G_x \) with a feasible flow pattern \(\langle x_{ij} \rangle \) from \(G \)
 o Then, construct a layered network from \(G_x \)
 ▪ How to construct \(G_x \)?
 o If \(<i, j> \in E \) and \(x_{ij} < c_{ij} \), then \(<i, j> \in G_x \) and \(d_{ij} = c_{ij} - x_{ij} \), where \(d_{ij} \) = capacity of edge \(<i, j> \in G_x \Rightarrow x_{ij} \uparrow \)
 o If \(<i, j> \in E \) and \(x_{ij} > 0 \), then \(<j, i> \in G_x \) and \(d_{ji} = x_{ji} \Rightarrow x_{ji} \downarrow \)
 ▪ Network \(G_x \) is called the “residual graph” (residual network)

• Layered network example

If \(f^* \) is max. flow on \(G \) \(\Rightarrow \) \(f^* - f \) is max. flow on \(G_x \)
DMKM Algorithm (Phase 1)

• Construction of a layered network from G_x
 - Use breadth-first search

• Rules
 - If any node is in a higher layer than t, then discard the node & all edges incident on it
 - Discard all nodes other than t that are in the same layer as t
 - Discard all edges that go from a higher layer to a lower layer
 - Discard any edge that joins two nodes of the same layer

• Example: next G_x for our layered network example

⇒ saturating flow = 2
 total saturating flow so far = $4 + 2 = 6$

⇒ s & t disconnected ⇒ max. flow = 6
DMKM Algorithm (Phase 1)

- **Example 2:**

 \[
 G_0 \text{ & saturating flow } = 4
 \]

 \[
 G_x
 \]

 \[
 G_L \text{ saturating flow } = 1
 \]
DMKM Algorithm (Phase 1)

- Example 2 continued:

\[G_L \text{ saturating flow} = 1 \]
\[\Rightarrow \text{max. flow} = 4 + 1 + 1 = 6 \]

\[\text{min. cut} \]
\[\text{disconnected} \]
DMKM algorithm

- Initialize flows $x_{ij} = 0$, done = “false”, $f = 0$
- While not (done) do
 - Construct $G_x = <V_x, E_x>$ with capacity matrix D
 - If t is not reachable from $s \in G_x$
 - done = “true”
 - Else
 - Construct a layered network G_L from G_x
 - Find saturating flow g of G_L
 - $f = f + g$
 - End if
- End do
Time complexity

• Finding saturating flows in a layered network (phase 2)
 ▪ At least one node is deleted at each iteration
 ⇒ At most \(n \) iterations
 ▪ In the \(i \)th iteration
 o Work involved is related to the # of times different edges are processed
 \[T = T_s + T_p \]
 where \(T_s \) ...saturated to capacity and \(T_p \) ...partial
 o If an arc is saturated, delete it
 \[\Rightarrow T_s = O(m) \]
 o # of partial steps \(\leq n \) (1 for each node)
 \[\Rightarrow T_p = O(n^2) \]
 ⇒ Total work = \(O(m) + O(n^2) = O(n^2) \)

• Phase 1
 ▪ There are at most \((n - 1) \) steps since the layers increase by at least one & \(s - t \) path length \(\leq n - 1 \)
 ▪ Constructing layered network ... \(O(m) \)
 ⇒ Total work: \(O(nm) + O(n^3) = O(n^3) \)
Blocking flow computation via “wave method”

• To present the method, we need the concept of preflow
 ▪ A preflow \((x_{ij})\) satisfies skew symmetry \((x_{ij} = -x_{ji})\) and capacity constraints
 ▪ The conservation constraints are not satisfied
 o Flow \((x_{ij})\) is such that inflow \(\geq\) outflow for every node \(\neq s\)
 ⇒ Total inflow into any node \(i \neq s\) must be at least as great as the total outflow from \(i\)
 \[
 \Delta_i = \sum_j x_{ji} - \sum_k x_{ik} \geq 0
 \]
 o Since \(x_{ik} = -x_{ki}\), we can also write this as:
 \[
 \Delta_i = \sum_j x_{ji} \geq 0
 \]
 where \(j\) is over all edges incident to \(i\) (both incoming and outgoing edges)
 ▪ Balanced node \(\Delta_i = 0, (i \neq s, t)\)
 ▪ Unbalanced node \(\Delta_i \geq 0, (i \neq s, t)\)
 ▪ A preflow is blocking if it saturates every path
 ▪ An edge on each path is at its capacity

• Key idea of wave method
 ▪ Start with a blocking preflow
 ▪ Iteratively convert it into a balanced blocking flow
 ⇒ A flow that satisfies conservation constraints

• How?
 ▪ Increase the outgoing flow of an unblocked & unbalanced node (or)
 ▪ Decrease the incoming flow of a blocked node
Illustrative Example

- Start with a preflow that saturates every edge out of \(s \) & zero flow on all other edges
- Blocked node \(\Rightarrow \) decrease incoming flow; unblocked node \(\Rightarrow \) increase outgoing flow
- Increase step:
 - If \((i, j)\) is an unsaturated edge such that \(j \) is unblocked, increase \(x_{ij} \) via:
 \[
 x_{ij} \leftarrow x_{ij} + \min\{c_{ij} - x_{ij}, \Delta_i\}
 \]
- Decrease step:
 - If node \(i \) is blocked and \(\exists \) a positive flow \(x_{ji} \), then:
 \[
 x_{ji} \leftarrow x_{ji} - \min\{x_{ji}, \Delta_i\}
 \]

Finally, blocking flow = max. flow \(\leftarrow \)
Mechanization of the wave method

• Start with a preflow \(\exists \) every edge out of \(s \) is saturated & has zero flow on all other edges
• Repeat increase flow & decrease flow until all nodes are balanced
• Increase flow
 ▪ Scan nodes other than \(s \) and \(t \) in topological order (reverse post-order visit)
 ▪ Balance each node \(i \) that is unbalanced & unblocked when it is scanned
 ▪ If balancing fails, label node \(i \) blocked (permanently)
• Decrease flow
 ▪ Scan vertices other than \(s \) and \(t \) in reverse topological order (i.e., post-order visit)
 ▪ Balance each vertex that is unbalanced & blocked when it is scanned
• Example:

 ![Graph Diagram]

 dfs scanning: \(s \ b \ d \ t \ a \ c \)
 Post order: \(t \ d \ b \ c \ a \ s \) (reverse topological order)
 Topological order: \(s \ a \ c \ b \ d \ t \)

 Easy problem!
Mechanization of the wave method

Example:

- Second flow increase (c is blocked. Balance)
 - d blocked ⇒ initiate decrease flow and result of iteration 1: make flow in (c,d) = 0

- Third flow increase
 - a is blocked ⇒ make flow <s, a> = 5
 - We are done since every path from s to t is blocked
 - Blocking flow = 5 units
Complexity result

- Wave method computes blocking flow of an acyclic graph in $O(n^2)$ time (& blocking flow of a general graph in $O(n^3)$ time)

- Proof:
 - If a node i is blocked, every path from i to t is blocked
 - Initially s is blocked
 - After increase flow step, if the balancing is a success, \exists no unblocked, unbalanced nodes
 - If balancing fails, \exists a blocked, unbalanced node
 - This blocked node is balanced during decrease flow step & remains balanced during subsequent increase flow steps
 - We block at least one node in each step
 - At most $(n - 1)$ steps
 - At each step of increase flow, either an edge is saturated or terminates in a balance
 - Similarly at each step of decrease flow either an edge flow is set to zero or terminates in a balance
 - $O(2m) + (n-1) (n-2)$ operations $\Rightarrow O(n^2)$
 - $O(n^3)$ complexity for max. flow follows from our earlier discussion w.r.t. DMKM algorithm
More Recent Algorithms

• Bertsekas, D. P., Linear network optimization, MIT press, 1991
Mapping Problem

- Set of tasks A, B, ..., F with a graph structure
- Arcs ⇒ communication time
- Processing times on two processors: \(t_{i1}, t_{i2} \)
- Problem: minimize (processing time + communication time)

Tasks for \(P_2 = \{ F \} \)
Tasks for \(P_1 = \{ A, B, C, D, E \} \)

- Total cost: 36 = cap. min. cut
- Makes sense since for an arbitrary partition of tasks: \((W, \bar{W})\)

- Establishing formal equivalence:

\[
\text{let } x_i = \begin{cases}
1 & \text{if task } i \text{ is allocated to } P_1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
\text{and } y_i = \begin{cases}
1 & \text{if task } i \text{ is allocated to } P_2 \\
0 & \text{otherwise}
\end{cases}
\]

⇒ Need: \(x_i + y_i = 1, \forall i \)
Mapping Problem

- Cost function:
 \[\sum_{i=1}^{n} t_{i1}x_i + \sum_{j=1}^{n} t_{i2}y_j + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}x_i y_j \]

- Define \(x_i y_j = \mu_{ij} \)

- Then \(x_i + y_j - \mu_{ij} \geq 0 \)

- The problem is:
 \[
 \begin{align*}
 \text{min} & \quad \sum_{i} t_{i1}x_i + \sum_{j} t_{i2}y_j + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \mu_{ij} \\
 \text{s.t.} & \quad x_i + y_j - \mu_{ij} \geq 0 \\
 & \quad \mu_{ij} \geq 0
 \end{align*}
 \]
 Similar to dual of max. flow

- Note: can’t extend to more than two processors
PERT networks

- If spend $0; project completes in $3 + 2 + 6 = 11$ days
 - Critical path $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
- If want to reduce the time, must spend $'$s on tasks $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 4$, since they are on the critical path
- Also, must spend on tasks with lowest cost per unit time \Rightarrow task $2 \rightarrow 3$
- Q: How far should we reduce?
- Answer
 - Till the arc is reduced to the minimum time a_{ij}
 - If this occurs, pick arc with the next lower cost per unit time
 - (or) path is no longer the critical path

\[a = \text{Min. time to perform a task} \]
\[b = \text{Normal completion time} \]
\[c = \$ \text{ to be spent to reduce completion time by one unit} \]
How to decide where to invest?

- Reduce <2, 3> by one unit
 \[\Rightarrow \text{Two critical paths } 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \text{ and } 1 \rightarrow 3 \rightarrow 4 \]

- To shorten longest paths, have three choices:
 - 1 \rightarrow 2 \& 1 \rightarrow 3 \text{ with } c_{12} + c_{13} = 3 + 1 = 4
 - 2 \rightarrow 3 \& 1 \rightarrow 3 \text{ with } c_{23} + c_{13} = 1 + 1 = 2
 - 3 \rightarrow 4 \text{ with cost } c_{34} = 3

(a, c, b)
a = \text{amount spent on arc}
c = \$/\text{unit time}
b = \text{current processing time}
Where to invest?

• Looks like a min. cut of a graph of active arcs
 - 2 – 3 & 1 – 3
• Note: Can’t reduce 2 – 3 any further

\[\text{two choices} \]

• Reduce \(c_{34} \) by one unit, since then 1 – 2 – 4 is also a critical path

\[\text{two choices} \]

• Now 1 – 2, 2 – 4, & 2 – 3 are rigid
Trade-off curve

- If we reduce 1 – 3 & 3 – 4 to their value & increase 2 – 3 w/o affecting the longest path
 - $0 \Rightarrow 11 \text{ days}; \; $1 \Rightarrow 10 \text{ days}; \; $3 \Rightarrow 9 \text{ days}; \; $4 \Rightarrow 8 \text{ days}; \; $22 \Rightarrow 4 \text{ days}; \; $27 \text{ for 3 days}
Summary

• Max. flow \equiv Min. cut

• Ford-Fulkerson labeling algorithm
 - Exponential and can converge to non-optimal solutions
 - Can fix the problem by computing shortest augmenting paths rather than any augmenting path

• DMKM algorithm
 - Push-pull version
 - Wave method

• Applications of maximum flow (mapping, PERT)