

Solution of Lyapunov Equation For Continuous and Discrete Systems

- **What is a Lyapunov Equation?**
- Application of Lyapunov Equation
- **Computational methods for solving the Lyapunov Equation**
 - Direct method
 - Iterative methods
 - Semi-iterative methods

What is Lyapunov Equation?

- What is Lyapunov Equation?
 - Continuous-time Lyapunov Equation: $A^T X + XA + S = 0$
 - Discrete-time Lyapunov Equation: $X = A^T X A + S$
 - The equations are <u>linear</u> and arise in the context of stability of linear systems
- **Lyapunov Equation and Stability of Linear Systems**
 - Continuous-time system: $\underline{\dot{x}} = A\underline{x} + B\underline{u}; \quad \underline{y} = C\underline{x}$
 - Discrete-time system: $\underline{x}_{i+1} = A\underline{x}_i + B\underline{u}_i; \ \underline{y}_i = C\underline{x}_i$
 - Original Lyapunov theorem: " $\dot{x} = A\underline{x}$ is asymptotically stable iff

for $S > 0, \exists$ a PD solution X for $A^T X + XA + S = 0$ ".

$$\Rightarrow X = \int_{0}^{\infty} e^{A^{T}\sigma} S e^{A\sigma} d\sigma$$

Lyapunov Equation and Stability

• "For discrete-time systems, $\underline{x}_{i+1} = A\underline{x}_i$ is asymptotically stable iff for S > 0, \exists a PD solution X for $X = A^T XA + S$ "

$$X = \sum_{i=0}^{\infty} (A^T)^i S A^i$$

- In the above cases, $v(\underline{x}) = \underline{x}^T X \underline{x}$ is a Lyapunov function.
- Lyapunov equation is used in estimating the rates at which $||x|| \rightarrow 0$
- Lyapunov function is used to analyze Lyapunov controllers, observers, etc.
- Our interest in Lyapunov equation stems from control and filtering applications rather than stability

Э

Lyapunov Equation and LQR - 1

Lyapunov Equation & Linear Quadratic Regulator (LQR) Problem

"For the continuous-time system, $\underline{\dot{x}} = A\underline{x} + B\underline{u}$;

find a linear feedback control $\underline{\mathbf{u}}(t) = -L\underline{x}(t)$ that minimizes $J(\underline{u}) = \int_{0}^{\infty} [\underline{x}^{T}(t)Q\underline{x}(t) + \underline{u}^{T}(t)R\underline{u}(t)]dt; Q > 0, R > 0"$

What does J(u) mean?

"We want $\underline{x} \rightarrow 0$ from \underline{x}_0 without using too much control."

For a given *L* computation of $\underline{J(u)} \Rightarrow$ solution of Lyapunov equation

- Suppose we take any feedback control $\underline{u}(t) = -L\underline{x}(t)$, where *L* is known
- What is the associated cost?

- Obviously we need $\underline{\dot{x}} = (A - BL)\underline{x}$ stable, otherwise $\underline{x}^T Q \underline{x} \to \infty$

- Let
$$\overline{A}_L = A - BL \Longrightarrow \underline{x}(t) = e^{\overline{A}_L t} \underline{x}_C$$

Lyapunov Equation and LQR - 2

• Therefore,

$$J(u) = \underline{x}_{0}^{T} \int_{0}^{\infty} [e^{\overline{A}_{L}^{T}t} Q e^{\overline{A}_{L}t} + e^{\overline{A}_{L}^{T}t} L^{T} RL e^{\overline{A}_{L}t}] dt \underline{x}_{0}$$
$$= \underline{x}_{0}^{T} \int_{0}^{\infty} e^{\overline{A}_{L}^{T}t} [Q + L^{T} RL] e^{\overline{A}_{L}t} dt \underline{x}_{0} = \underline{x}_{0}^{T} V_{L} \underline{x}_{0}$$
where V_{L} = "cost matrix" associated with gain L.

• Note that V_L satisfies the Lyapunov equation: $\overline{A}_L^T V_L + V_L \overline{A}_L + Q + L^T RL = 0$

- How can we pick $L^* \ni V_L^* < V_L \forall L$? i.e., $V_L V_L^* \ge 0$? => Solving continuous-time Riccati equation!....Lecture 14
- Discrete-time case: "Given a discrete-time system,

$$\underline{x}_{i+1} = A\underline{x}_i + B\underline{u}_i ;$$

find a linear feedback control $\underline{u}_i = -L\underline{x}_i$ that minimizes

$$J(\underline{u}) = \sum_{i=0}^{\infty} \underline{x}_{i}^{T} Q \underline{x}_{i} + \underline{u}_{i}^{T} R \underline{u}_{i} "$$

6

Lyapunov Equation and LQR - 3

• Closed-loop system matrix

$$A_L = A - BL$$

• State in terms of closed-loop system matrix

$$\underline{x}_i = \overline{A}_L^i \underline{x}_0$$

• Cost function can be rewritten in terms of closed-loop system matrix as:

$$J(\underline{u}) = \underline{x}_0^T \left[\sum_{i=0}^\infty (\overline{A}_L^T)^i (Q + L^T R L) \overline{A}_L^i\right] \underline{x}_0 = \underline{x}_0^T V_L \underline{x}_0$$

- The cost matrix V_L satisfies the discrete Lyapunov equation: $\overline{A}_L^T V_I \overline{A}_L + Q + L^T RL = V_I$
- Again the problem of picking $L^* \ni V_L^* = \min_L \underline{x}_0^T V_L \underline{x}_0$ involves discrete-time Riccati equation.

Lyapunov Equation and Estimation - 1

Lyapunov Equation and the Estimation problem

- Consider a linear continuous-time system: $\underline{\dot{x}} = A\underline{x} + E\underline{w}$ where \underline{w} is zero mean Gaussian noise with covariance matrix $E\{w(t)w(\tau)\}=W\delta(t-\tau)$
- $\Rightarrow X(t) = \operatorname{cov}\{x(t)\} = E\{x(t)\underline{x}^{T}(t)\}, \text{ where}$ $\dot{X}(t) = AX(t) + X(t)A^{T} + EWE^{T}$
- If *A* is stable, then in the steady state $0 = AX + XA^{T} + EWE^{T}$
- For discrete-time systems

 $\underline{x}_{i+1} = A\underline{x}_i + E\underline{w}_i$ where \underline{w}_i is zero mean white Gaussian noise sequence with covariance matrix $E\{\underline{w}_i \underline{w}_j^T\} = W\delta_{ij}$

• \Rightarrow s.s covariance of x denoted by X satisfies: $X = AXA^T + EWE^T$

Lyapunov Equation and Estimation - 2

Estimation/Filtering in Continuous-time Systems with Continuous-time Measurements

- Consider a continuous-time linear system: $\underline{\dot{x}} = A\underline{x} + B\underline{u} + E\underline{w}$
- Measurement equation $y(t) = C\underline{x}(t) + \underline{v}(t)$
- Objective: Generate estimate $\underline{\hat{x}}(t)$ continuously.
- If there is no noise and we knew \underline{x}_0 , then $\Rightarrow d \, \underline{\hat{x}}(t) / dt = A \underline{\hat{x}}(t) + B \underline{u}(t); \quad \underline{\hat{x}}(0) = \underline{x}_0$ $\underline{\dot{e}}(t) = A \underline{e}(t) \Rightarrow \underline{e}(t) = e^{At} \underline{e}_0 = \underline{0}; \quad \underline{e}(t) = \underline{x}(t) - \underline{\hat{x}}(t)$
- But, if $\underline{e}_0 \neq 0$ and *A* is unstable, then $\|\underline{e}(t)\| \rightarrow \infty$.
- Solution: Use measurements to stabilize. e.g., $d \underline{\hat{x}}(t) / dt = A \underline{\hat{x}}(t) + B \underline{u}(t) + K[\underline{y}(t) - C \underline{\hat{x}}(t)]$ residual $\underline{v}(t) = \underline{y}(t) - C \underline{\hat{x}}(t) = C \underline{e}(t) + \underline{v}(t)$

Lyapunov Equation and Estimation - 3

- In fact, we can accomplish more than stability!! We can choose
 - *K* to minimize a performance criterion. "minimize $cov{e(t)}$ or MMSE in s.s".
- Now $\dot{\underline{e}}(t) = (A KC)\underline{e}(t) + E\underline{w} K\underline{v}(t)$ let $\Sigma = \operatorname{cov}[e(t)]$ in ss $\Rightarrow 0 = (A - KC)\Sigma + \Sigma(A - KC)^{T} + EWE^{T} + KVK^{T}$
- We need (*A KC*) stable, so pick $K^* \ni \Sigma_{K^*} < \Sigma_K \forall K \neq K^*$

Sensitivity Analysis

 $0 = AX_i + X_iA^T + (A_iX + E_iWE^T + EWE_i^T + XA_i^T); \quad X_i = \frac{\partial X}{\partial \theta_i}$ output feedback problem, insensitive control design, PDE,....

Computational Techniques

Computational Techniques

Э

- Direct methods \Rightarrow solve $A\underline{x} = \underline{b}$
- Iterative methods \Rightarrow sum up terms. Use doubling schemes
- Semi-iterative methods \Rightarrow use QR metod to reduce A to special form and then use $A\underline{x} = \underline{b}$ on the modified matrix.
- 1) Direct Method: Equation has n(n+1)/2 unknowns. Organize X and S as vectors.
 - Rewrite as $A_{\mathcal{V}} \underline{x}_{\mathcal{V}} = -\underline{S}_{\mathcal{V}}$; Example:

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{11}x_{11} + a_{21}x_{12} & a_{12}x_{11} + a_{22}x_{12} \\ a_{11}x_{12} + a_{21}x_{22} & a_{12}x_{12} + a_{22}x_{22} \end{bmatrix} + \begin{bmatrix} \end{bmatrix}^{T} = -S$$

$$\Rightarrow \begin{bmatrix} 2a_{11} & 2a_{21} & 0 \\ a_{12} & a_{11} + a_{22} & a_{21} \\ 0 & 2a_{12} & 2a_{22} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ x_{22} \end{bmatrix} = -\begin{bmatrix} s_{11} \\ s_{12} \\ s_{22} \end{bmatrix}$$

$$\bullet \text{ need } \lambda_{k}(A_{V}) = \lambda_{i} + \lambda_{j} \neq 0$$

Direct Method

- Can see as follows:
 - $A = U\Lambda U^{-1}; A^{T} = V\Lambda V^{-1}; Note : V = (U^{-1})^{T} and V^{-1} = U^{T}$
 - $XU\Lambda U^{-1} + V\Lambda V^{-1}X = -S$
 - $V^{-1}XU.\Lambda + \Lambda V^{-1}XU = -V^{-1}SU$
 - define $Y = V^{-1}XU = U^T XU$ and $\tilde{S} = V^{-1}SU = U^T SU$. then $Y\Lambda + \Lambda Y = -\tilde{S}$

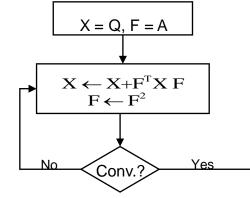
$$\Rightarrow y_{ij} = -s_{ij} \: / \: (\lambda_i + \lambda_j)$$

- \Rightarrow need $\lambda_i + \lambda_j \neq 0$
- Can be solved via LU decomposition
- Can solve for multiple S_i
- Direct method requires $O(n^6 / 24)$ operations.
- Very bad approach for n ≥ 6 due to round-off errors and/or CPU time.
- Accuracy is not very well controlled.

Iterative Method: DLyap

2) <u>"Iterative Method"</u>Generate $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \dots \rightarrow X_n \rightarrow X$.

- First, consider the discrete Lyapunov equation: $X = A^T XA + Q$
 - We know that the solution is $X = \sum_{i=0}^{\infty} (A^T)^i Q A^i$.
 - So, sum via the doubling algorithm.



Convergence test $\|\Delta X\| \le \text{TOL} \|X\|$ $\Delta x_{ii}, i = 1, 2, ...$ $\text{TOL}=10^{-5}$ or so or test on diagonal elements

- Convergence rate $\left\|\Delta X_k\right\| \le \left\|\left(A^2\right)^k\right\| \cdot \left\|X_k\right\|$
- Actually growth is governed by $\lambda_{\max}(F)$
- So, $\left\|\Delta X_k\right\| \le \left|\lambda_{\max}(A)\right|^{2^k} \|X\|$
- Rarely, if ever, do we need more than 10 iterations (k = 10 will handle $\lambda_{max} \approx .99$) So, expect $< 25n^3$ operations.

Application to Continuous Lyapunov Equation

Recall X is s.s solution of $dX / dt = A^T X + XA + S$

There are basically two approaches

(a) Discrete-time representation

(b) Bilinear transformation

(a) Discrete-time representation

$$\overline{X(t+\Delta)} = e^{A^T \Delta} X(t) e^{A\Delta} + \int_{0}^{\Delta} e^{A^T} \sigma S e^{A\sigma} d\sigma \text{ valid for } \forall \Delta.$$

- So, pick $\Delta \ni \Delta \le .5 / \|A\|$ and use algorithms for $e^{A\Delta}$ and $\int_{\Omega}^{\Delta} e^{A^T \sigma} S e^{A\sigma} d\sigma$
- Then use doubling scheme with $F = e^{A\Delta}$ and $Q = \int_{0}^{\Delta} e^{A^{T}\sigma} S e^{A\sigma} d\sigma$
- Need ~ $25n^3$ MADDS just for set up.
- Also, truncation errors in $e^{A\Delta}$ and Q will give same order of magnitude errors in X
- Convergence rate depends on $\left|\lambda_{\max}(e^{A\Delta})\right| = e^{\sigma_{\min}(A)\Delta}$; $\sigma_{\min} = \min.real part < 0$

- So, bigger $\Delta =>$ faster convergence rate; Δ too small => trouble.

Comments:

- Very simple method (needs only matrix multiplication routine)
- Safe and robust, but too costly in initialization
- Keep $\Delta \ge .1/\|A\|$
- (b) **Bilinear transformation**:
 - In (a), we have used an exponential transformation: $\Phi = e^{A\Delta}$
 - <u>Idea</u>: Suppose, we define $\Phi = (\tau A + I)(\tau A I)^{-1}; \tau > 0$ since functions of *A* commute, we also have: $\Phi = (\tau A - I)^{-1}(\tau A + I)$

This is called **bilinear transformation**. Why?

• Because if the transformation is solved for *A*:

$$(\tau A - I)\Phi = \tau A + I$$

$$\tau A\Phi - \Phi = \tau A + I \implies \tau A(\Phi - I) = \Phi + I$$

$$\Rightarrow A = (\Phi + I).(\Phi - I)^{-1} / \tau$$

$$\Rightarrow \text{ same form as original} \implies \text{Bilinear}$$

• If we substitute A into $A^T X + XA + S = 0$, we obtain $X(\Phi+I)(\Phi-I)^{-1} / \tau + (\Phi^T - I)^{-1}(\Phi^T + I)X / \tau + S = 0$ $(\Phi^T - I)X(\Phi+I) + (\Phi^T + I)X(\Phi - I) + \tau(\Phi^T - I)S(\Phi + I) = 0$ $\Rightarrow 2\Phi^T X \Phi - 2X + \tau(\Phi^T - I)S(\Phi + I) = 0$ Note that since $\Phi = (\tau A - I)^{-1}(\tau A + I)$ $= (\tau A - I)^{-1}(\tau A - I + 2I)$ $\Rightarrow \Phi = I + 2(\tau A - I)^{-1}$ $\Rightarrow \Phi^T X \Phi - X + 2\tau(\tau A^T - I)^{-1}S(\tau A - I)^{-1} = 0$ $\Rightarrow So, this is a discrete-time Lyapunov equation with$ $Q = 2\tau(\tau A^T - I)^{-1}S(\tau A - I)^{-1}$

How to pick $\tau > 0$?

- Recall that $\lambda_i(\Phi) = (\tau \lambda_i(A) + 1) / (\tau \lambda_i(A) 1).$
- We would like to pick $\tau \ni \lambda_{\max}(\Phi)$ is minimized to speed up convergence.
- For real roots $\frac{1}{\tau^*} = \sqrt{\lambda_{\min}(A) \cdot \lambda_{\max}(A)} \sim$ geometric mean
- For arbitrary case $1/\tau \sim |\operatorname{tr}(A)|/n$ can be argued "heuristically"

since want
$$\tau \approx \frac{1}{|\lambda_i|}$$
. Use $\tau = \min[1, 4n / \sum_i |a_{ii}|]$

Algorithm using bilinear transformation

- 1. Pick τ
- 2. Compute:

$$\Phi = I + 2(\tau A - I)^{-1}$$

$$Q = 2\tau(\tau A^{T} - I)^{-1}S(\tau A - I)^{-1}$$

- 3. Solve for X using doubling scheme
- Note that the set up requires ~ 1.5 multiplications +1 inversion $\approx 2.5n^3$ operations.
- Excellent method for solving Lyapunov equation!

Can extend to generalized Lyapunov equation in a straightforward manner

AX + XB + C = 0; A, B stable

A is $n \ge n$, B is $m \ge m$, C is $n \ge m$ and X is $n \ge m$

Semi-iterative Bartels-Stewart Algorihtm - 1

3) Semi iterative methods

Bartels and Stewart "Solution of matrix equation AX + XB = C" <u>Comm. of the ACM</u>, vol.15, No.9, sept.1972.

• Consider $A^T X + XA + S = 0$ (*)

- <u>Idea</u> : Find an orthogonal matrix $Q \ni Q^T A Q$ = upper Schur form

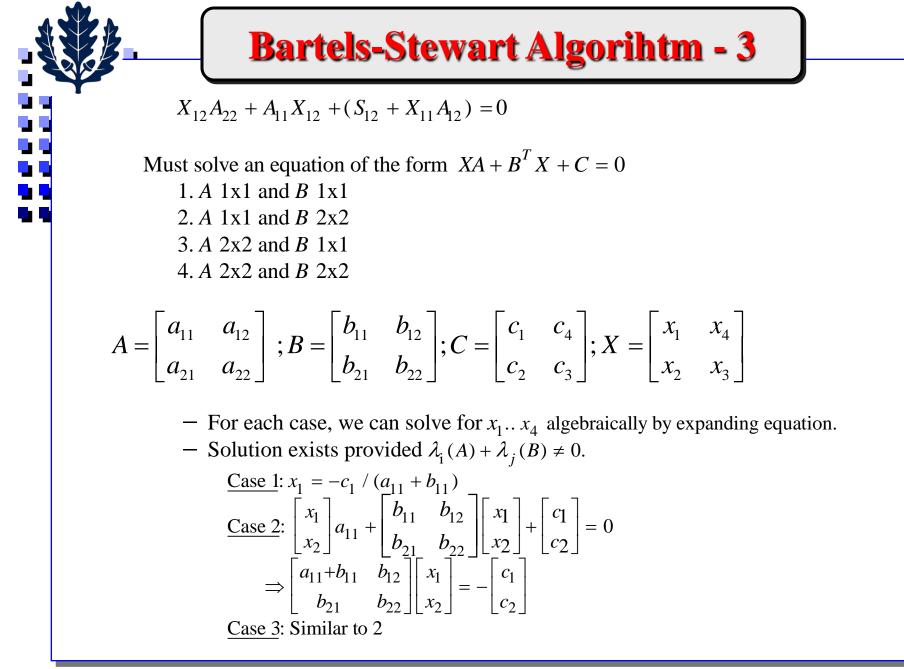
 $Q^{T}AQ = \tilde{A} = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1p} \\ & A_{22} & \dots & A_{2p} \\ & & & & A_{pp} \end{bmatrix}$ diagonals are 1x1 or 2x2 blocks and there are p such blocks

- Pre- and post multipy(*) by Q^T and Q to obtain $Q^T X Q Q^T A Q + (Q^T A Q)^T Q^T X Q + Q^T S Q = 0$ $\Rightarrow \widetilde{X} \widetilde{A} + \widetilde{A}^T \widetilde{X} + \widetilde{S} = 0$
- Q: Is it easier to solve this equation?
- A: Yes!! Can be solved in pieces. Recall forward elimination!!

$$+ \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ X_{k1} & X_{k2} & \cdots & X_{kp} \\ X_{p1} & & \cdots & X_{pp} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \cdot A_{1l} \cdot A_{1p} \\ 0 & A_{22} \cdot \cdots & A_{2p} \\ 0 & \cdots & A_{pp} \end{bmatrix} \\ + \begin{bmatrix} A_{11}^{T} & X_{12} & \cdots & X_{pp} \\ A_{12}^{T} & A_{22}^{T} & 0 \\ A_{1k}^{T} & A_{2k}^{T} & \cdots & A_{pp}^{T} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ X_{k1} & X_{k2} & \cdots & X_{pp} \end{bmatrix} \\ = 0$$

- Solve for each sub-block X_{kl} .
- Note that:

1.
$$X_{11}A_{11} + A_{11}^T X_{11} + S_{11} = 0$$
 ($k = 1, l = 1$)
 $\Rightarrow X_{11}$ via algebraic symmetric formula. X_{11} either 2x2 or 1x1.
2. $X_{11}A_{12} + X_{12}A_{22} + A_{11}X_{12} + S_{12} = 0$ ($k = 1, l = 1$)
 $X_{11}A_{12}$ is known, so the unknown X_{12} can be solved via:



Bartels-Stewart Algorihtm - 4

$$\underline{\text{Case4}:} \begin{bmatrix} a_{11} + b_{11} & b_{21} & 0 & a_{21} \\ b_{12} & a_{11} + b_{22} & a_{21} & 0 \\ 0 & a_{12} & a_{22} + b_{22} & b_{12} \\ a_{12} & 0 & b_{21} & a_{22} + b_{11} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = -\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}$$
$$\Rightarrow \text{ So, we work across rows} \quad x_{11} \to x_{12} \to \dots x_{1p}, \quad x_{22} \to \dots$$

- In general, consider block kl; $l \ge k$. solve by writing subequation for X_{kl} . Have X_{ij} that have already been computed

$$\sum_{i=1}^{l} X_{ki} A_{il} + \sum_{j=1}^{k} A_{jk}^{T} X_{jl} + S_{kl} = 0$$

$$X_{kl}A_{ll} + A_{kk}^T X_{kl} + S_{kl} + \sum_{i=1}^{l-1} X_{ki}A_{il} + \sum_{i=1}^{k-1} A_{jk}^T X_{jl} = 0$$

- Solution for subblock is fast and accurate via LU decomposition
- Then, desired solution $X = Q\tilde{X}Q^T$.

Bartels-Stewart Algorihtm - 5

- Computational load = $2n^3 + 4\sigma n^3 + 7n^3/2$
 - $-A \rightarrow$ Hessenberg form $\approx 2n^3$
 - Hessenberg \rightarrow Schur form $\approx 4\sigma n^3$
 - Algebraic solution + forming S, X from $\tilde{X} \approx 7n^3 / 2$
- Note if want to solve $XA + A^TX + S_i = 0$, i = 1, 2, ... This can be accomplished in ~ $7n^3/2$ (~30% of time to solve for *i* =1).
- Solution of adjoint equation $XA^T + AX + C = 0$ after having solved original
 - This arises in optimal output feedback and insensitive control system design problems

 $E = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

- Have $A = Q^T A Q$ = upper Schur form
- So, need to solve $Q^T X Q (Q^T A Q)^T + Q^T A Q Q^T X Q + Q^T C Q = 0$ $\tilde{X} = Q^T X Q; \quad \tilde{A}^T = Q^T A Q =$ lower Schur form
- Can transform \tilde{A}^T to upper Schur form via $E\tilde{A}^T E$, where *n* x *n* Exchange matrix. *E* is orthogonal and symmetric $\Rightarrow E^2 = I$ and $E^{-1} = I$

Bartels-Stewart Algorihtm - 6

• So, solve

$$E\tilde{X}EE\tilde{A}^{T}E + E\tilde{A}EE\tilde{X}E + E\tilde{C}E = 0$$
$$\implies \tilde{X}_{1}A_{1} + \tilde{A}_{1}^{T}\tilde{X}_{1} + \tilde{C}_{1} = 0$$

Algorithm steps:

- 1) $\tilde{A}_1 = E\tilde{A}^T E = \tilde{A}^T$ with rows and columns in reverse order.
- **2**) *EĈE*
- 3) Solve for \tilde{X}_1
- $4) \quad X = Q E \tilde{X}_1 E Q^T$
- Advantages of Barter-Stewart algorithm:
 - 1) Faster than iterative method
 - 2) Excellent for repeated solutions and adjoint (also C need not be equal to C^{T})
 - 3) Can solve when *A* is not stable. Need only $\lambda_i + \lambda_j \neq 0$. of course, solution won't be PD in this case.

Problems with Bartels-Stewart

Problems:

1) Disappointing accuracy \approx 4 digits vs 5 digits for iterative. Why? because scheme generated to accuracy of QR and orthogonality of *Q*.

What to do? Use iterative improvement.

Let X_1 =solution via Bartels-Stewart's algorithm.

Let the true solution be $X = X_1 + \delta X$

$$(X_1 + \delta X) A + A^T (X_1 + \delta X) + C = 0$$

$$\Rightarrow \delta X A + A^T \delta X + (C + X_1 A + A^T X_1) = 0$$

 $C + X_1A + A^TX_1 \rightarrow$ residual must be computed in DP solve for δX using Bartels-Stewart's algorithm. already have $A \Rightarrow 7/2n^3 \text{ ops} + 1$ matrix multiplication

- 2) In case when A = stable and $C \ge 0$, X need not be PD.
- 3) More storage needed ($\approx 2-3 n^2$ locations)
- 4) More software <u>needed</u> (recall the need for QR algorithm to compute upper Schur form)

Summary

- **Background on Lyapunov Equation**
- □ Application of Lyapunov Equation
- **Computational methods for solving the Lyapunov Equation**
 - Direct method
 - Iterative methods
 - Semi-iterative methods