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0 Whatis a Lyapunov Equation?
O Application of Lyapunov Equation

O Computational methods for solving the Lyapunov Equation

e Direct method
e lterative methods
e Semi-iterative methods
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Rov| hat is Lyapunov Equatiﬁnj.

O What is Lyapunov Equation?
e Continuous-time Lyapunov Equation: A"X + XA+S =0

e Discrete-time Lyapunov Equation: X =A"XA+S
e The equations are linear and arise in the context of
stability of linear systems
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O Lyapunov Equation and Stability of Linear Systems
e Continuous-time system: x=Ax+Bu; y=Cx

e Discrete-time system: ., =AX +Bu;; y =Cx

e Original Lyapunov theorem: "x = Ax is asymptotically stable iff

for S > 0,3 a PD solution X for A" X + XA+S =0". .

= X:feAT"SeA“da
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@ Lyapunov Equation and Stability

e "For discrete-time systems, x.., = Ax, is asymptotically stable
iff for S >0, 3 a PD solution X for X = ATXA+S"

X =i(AT)‘SA‘

e In the above cases, v(x) = x' X x is a Lyapunov function.
e Lyapunov equation is used in estimating the rates
at which |x|—0

e Lyapunov function is used to analyze Lyapunov controllers,
observers, etc.

e QOur interest in Lyapunov equation stems from control
and filtering applications rather than stability 1
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' (I Lyapunov Equation and LQR - 1 I

O Lyapunov Equation & Linear Quadratic Regulator (LQR) Problem

"For the continuous-time system, x = AX+ Bu;

FlR OO L.

find a linear feedback control u(t) = —Lx(t) that minimizes
JW =[x QXM +u' (HRuM]d;Q >0,R > 0"
0

O What does J(u) mean?
"We want x — 0 from x, without using too much control."

O Foragiven L computation of J(u) = solution of Lyapunov equation

e Suppose we take any feedback control u(t) = —Lx(t), where L is known

e \What is the associated cost?

— Obviously we need x = (A— BL)Xx stable, otherwise XTQX —> 00
t
X0

kL

~ Let AL = A~ BL => x(t) = et x
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' (I Lyapunov Equation and LQR - 2 I

e Therefore,

S X
I(u) = xp [[eAttQe ™t e M TRLeA  dtx,
0
0 —T =
= % [ €A [Q+LTRLIe M dtx, = xoV, X,
0

where V| ="cost matrix" associated with gain L.

e Note that V, satisfies the Lyapunov equation:
ATV, +V AL+Q+L"RL=0

O Howcanwepick L' 5V, <V, VL? ie,V, -V, >0?

=> Solving continuous-time Riccati equation!.....Lecture 14

O Discrete-time case: ”Given a discrete-time system,
X, = AX +BU; ;

kL

find a linear feedback control u, = —Lx. that minimizes

J(U)="x Qx, +U; Ry, "
i=0
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s (I Lyapunov Equation and LQR - 3 |

o Closed-loop system matrix
AL = A-BL
e State in terms of closed-loop system matrix

X. = ALX
e Cost functi(;n can be0 rewritten in terms of closed-loop system matrix as:
W =X [Y (A (Q+ L'RL)ALIX, = X[V, X,
e The cost matrix V, sa;;iosfies the discrete Lyapunov equation:
AV, AL+Q+LRL=V,
e Again the problem of picking L 3V, = mLin >_<ZVL>_<0 involves

discrete-time Riccati equation. . %
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Lyapunov Equation and Estimation - 1

O Lyapunov Equation and the Estimation problem

e Consider a linear continuous-time system:
X = Ax+Ew where w is zero mean Gaussian noise
with covariance matrix E{w(t)w(7)}=Wo(t-7)

— X (t) =cov{x(t)} = E{x()x' (t)}, where
X (t) = AX (t) + X (1) A" + EWE'

If A is stable, then in the steady state
0=AX + XA' + EWE'

For discrete-time systems

X L= AX; + Ew; where W, is zero mean white Gaussian noise sequence
1+

with covariance matrix E{w; v_v} F=W;

FlR OO L.

= s.s covariance of x denoted by X satisfies:
X = AXA' + EWE'

°
L L
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Lyapunov Equation and Estimation - 2

O Estimation/Filtering in Continuous-time Systems with Continuous-
time Measurements

Consider a continuous-time linear system:
X=Ax+Bu+Ew

e Measurement equation
y(t) = CX(t) +v(t)

o Objective: Generate estimate x(t) continuously.

o If there is no noise and we knew Xx,, then
=dx(t) /dt = AX(t) + Bu(t); %(0) =X,

& (1) = Ae(t) = e(t) =e" e, = 0; e(t) =x(t) - X(t)
o But, if ¢, #0 and A is unstable, then

Q(t)H —> 0.

o Solution: Use measurements to stabilize.
e.g., dx(t)/dt = Ax(t) + Bu(t) + K[y(t) - CX(t)]
residual v(t) = y(t) - CX(t) = Ce(t) + v(t)
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Lyapunov Equation and Estimation - 3

e In fact, we can accomplish more than stability!! We can choose
K to minimize a performance criterion.
"minimize cov{e(t)} or MMSE in s.s".
o Now g(t) = (A—KC)e(t) + Ew—Ky(t)
let = = cov[e(t)] inss = 0=(A-KC)Z+Z(A-KC)" + EWE' +KVK
e We need (A-KC) stable, so pick K" 5% . <X, VK = K"

T

Q  Sensitivity Analysis

0=AX, + X A" +(AX +EWE" + EWE + XA"); Xizg—z -
output feedback problem, insensitive control design, PDE,'.... ey
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Y5 - (I Computational Technigues l

O Computational Techniques
e Direct methods = solve Ax =D

o lterative methods = sum up terms. Use doubling schemes
e Semi-iterative methods = use QR metod to reduce A to special
form and then use Ax = b on the modified matrix.
1) Direct Method: Equation has n(n+1) / 2 unknowns. Organize X and S
as vectors.
o Rewrite as A, Xy =-Sy;

Example:

|:X11 X12:||:a11 a12:| :>|:a11Xll+a21X12 a12xll+a22X12:|+|: :|T :—S

X1 Xy || 8y 8y Ay X, ta5 X, ApX, H8yX,,
2a,, 2a,, 0 X1 Siy ad'a
=, Q;+ady Ay || Xy [T Sp o
0 2a,, 28,, || Xy Sy 4 4
o o

o need 4, (A)=4+4, =0
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(I Direct Method I

Can see as follows:

A=UAU A" =VAV " Note:V = (U_l)T andv™'-u’
XUAU ! +VAV X = =5

VIXUA+AV XU = v isu

defineY =V "XU =U' XU and =V 'SU =U ' sU. then
YA+ AY =-S

= Yij = ~Sjj I (A4 +/1j)

= need 4, +/1j #0

e Can be solved via LU decomposition
« Can solve for multiple S,

o Direct method requires O(n° / 24) operations.
e Very bad approach for n > 6 due to round-off errors and/or CPU
time.

e Accuracy is not very well controlled.
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4
ay 2) "lterative Method" ....Generate X; — X, = X; —>... > X, > X.
n e First, consider the discrete Lyapunov equation:
: X = A" XA+Q
— We know that the solution is X = >, (AT)iQAi.
i=0
— S0, sum via the doubling algorithm.,
X=Q.F=A Convergence test [aX| < TOL|X]|
v AXii i =1,2,..
RSOV TOL=10" or s0
l or test on diagonal elements
ha Conv.? res >
e Convergence rate [ax, | < |(A%)¥].|X,|
e Actually growth is g;)kverned by Ao (F) .
e S0, [AXy] <[ Amax (A" [X] -
« Rarely, if ever, do we need more than 10 iterations (k = 10 will handle A, ~.99) |5 3
So, expect < 25n° operations. o
4
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Iterative Method: Continuous Lyap - 1

O Application to Continuous Lyapunov Equation
Recall X is s.s solution of dX /dt = A" X + XA+S
There are basically two approaches
(a) Discrete-time representation
(b) Bilinear transformation

(a) Discrete-time representation

A

-

X(t+A)=e” X ()™ + | e* °Se”?do valid for v A.
0

A
So, pick A > A <.5/||A|| and use algorithms for e™* and [e* “Se*do
0

A
Then use doubling scheme with F = ¢™* and Q = jeAT“SeA“da
0

Need ~ 25n3 MADDS just for set up.
Also, truncation errors in e™ and Q will give same order of magnitude errors in X

- (A)A .
Convergence rate depends on |2, (€*%)| = e minM%. & = min.real part < 0

[
kL
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Iterative Method: Continuous Lyap - 2

— S0, bigger A=> faster convergence rate; Atoo small => trouble.

O Comments:

[ N N N NS .

e Very simple method (needs only matrix multiplication routine)
e Safe and robust, but too costly in initialization
o KeepA>.1/|A
(b) Bilinear transformation:
e In (a), we have used an exponential transformation:
O =e™
e Idea: Suppose, we define @ = (tA+ 1)(zA-1)";7>0

since functions of A commute, we also have:
D =(zA-1)*(zA+1)

This is called bilinear transformation. Why? ey
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Iterative Method: Continuous Lyap - 3

(tA-1)D =7A+1

TAD-D=7A+1 =>7A(DP-1)=D+
S A=(@+1).(Dd-1)"/7

= same form as original = Bilinear

o If we substitute A into A" X + XA+S =0, we obtain
X(@+D)(@-1)"r+(@ 1) (@ +1)X/z+S=0
(@ —DX@+1)+(@ +D)X(@ =D +7(D —1NS(@+1)=0
=20 XO-2X + (@' —1)S(@+1)=0
Note that since ® = (tA- I)_l(rA+ 1)
= (A=) (zA=1+2I)
Sd=1+2A-1)"
SO XD - X +20(cA —D)7IS(EA-1)T =0
= S0, this is a discrete-time Lyapunov equation with
Q=2¢(cA — 1) 'SGA-1)" -

[ N N N NS .
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4 Iterative Method: Continuous Lyap -
o
: d How to pick T > 07?
1
: o Recall that A (@) = (24 (A)+1) /(4 (A) -1).
o Wewould like to pick 7 > A4__ (®) Is minimized to speed up
convergence.
o For real roots i = J A (A).A, (A) ~ geometric mean
T
e For arbitary case 1/7 ~| tr(A) | /n can be argued "heuristically"
since want 7 ~ ﬁ Use 7 = min[L4n/ ) | a; |]
«d o
o o
«d 'd
o d
a
a
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Iterative Method: Continuous Lyap -

O Algorithm using bilinear transformation

1. Pick 7
2. Compute:

O=1+2(rA-1)"
Q=2r(cA' = 1)'S(zA-1)"
3. Solve for X using doubling scheme

&

FlR OO L.

« Note that the set up requires ~ 1.5 multiplications +1 inversion ~2.5n°
operations.

e Excellent method for solving Lyapunov equation!

O Can extend to generalized Lyapunov equation in a straightforward
manner

AX + XB+C =0; A, B stable

kL

Aisnxn, Bismxm,Cisnxmand X isnxm
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Y-2|Semi-iterative Bartels-Stewart Algorihtm - 1

3) Semi iterative methods

Bartels and Stewart "Solution of matrix equation AX + XB =C"
Comm. of the ACM, vol.15, No.9, sept.1972.

e Consider A'X + XA+S =0 *)
— Idea : Find an orthogonal matrix Q > QT AQ = upper Schur form

[ N N N NS .

Ar Ap .. Ay
Q' AQ=A= Py .. Ay
A

diagonals are 1x1 or 2x2 blocks
and there are p such blocks

PP |

— Pre- and post multipy(*) by QT and Q to obtain
Q' XQQ'AQ+(Q'AQ)' Q' XQ+Q'sQ =0
— XA+A X+§=0

— Q: Is it easier to solve this equation?

— A: Yes!! Can be solved in pieces. Recall forward elimination!!
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A J_| Bartels-Stewart Algorihtm - 2 |

4
4
: — Partition blocks of X conformal with A so that
o _ -
L] xll ><12 nor le _Ai Ai A& Ai ]
N 1 2" I p
Xa Xy X2 || O A, A,
L — P 2+ Mop
Xiw Xz 0 Xy 0 A A
X D PP |
-~ P J__ _
A Xn Xp X | S
T T 11
n Ay Ao, 0 Xa X X2p +ls
T T T 21
Ay P Ay Xig Kz Xip
T T | T pl
_Aip I App__xpl pr
— Solve for each sub-block X, .
— Note that:
1. X Ay + A Xy +S,, =0k =1,1=1)
= X,, via algebraic symmetric formula. X, either 2x2 or 1x1.
2. X33 + XipPp + Ay Xy, +8p, =0 (K =1,1=1)
X11A, Is known, so the unknown X, can be solved via:
20 Copyright ©2004 by K. Pattipati
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A J_| Bartels-Stewart Algorihtm - 3 I

X1oAp + A1 Xpp +(S, + X3 Ap) =0

Must solve an equation of the form XA + B'X +C=0
1. A1xland B 1x1
2. A 1x1 and B 2x2
3.A2x2and B 1x1
4. A 2x2 and B 2x2

b c, C X
A{aﬂ aﬂ};B:[bn oo G Gl [X% %
a21 a'22 b21 b22 CZ C3 XZ X3

— For each case, we can solve for x .. x, algebraically by expanding equation.

— Solution exists provided 4 (A) + ﬂj (B) # 0.
Case L x; =—¢, /(a;; +byy)

[ N N N NS .

X b b X C
CaseZ:{l}all+ 1 12 {1}+{ 1}:0
X2 b21 b22 X2 C2 od
{all"'bll bo || % | | 4 4
= = - a7
b1 by || %o Cy

Case 3: Similar to 2
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Ye Bartels-Stewart Algorihtm - 4

ag, + by 0y, 0 Ay X G
Case4: b, 3y, +Dby, dyq 0 Xy C,
0 ajo ayy + D0y b, X3 C3
BGY 0 by, Ay +0py || X4 ] Cyq
=> S0, We WOrk across rows — Xj; —> X, —>...X5, Xpp —>...

Have X;; that have already been computed

| k
Zxkipﬂ +ZAJT|<X

Xia A1+ Ag X +Sig +Zxkl A +ZA

— Solution for subblock is fast and accurate V|Ja LU decomposition
— Then, desired solution X = QXQ

jt ¥ =0

Copyright ©2004 by K. Pattipati
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N Bartels-Stewart Algorihtm - 5

« Computational load = 2n3+ 40on®+ 7n3/2

— A — Hessenberg form ~ 2n3
— Hessenberg — Schur form ~ 4on3
— Algebraic solution + forming S, X from X ~ /2

 Note if want to solve XA+ ATX + S=0, i =1, 2, ... This can be accomplished
in ~ 7n3/2 (~30% of time to solve for i =1).
« Solution of adjoint equation XAT + AX + C = 0 after having solved
original
— This arises in optimal output feedback and insensitive control system
design problems
— Have A = Q'AQ = upper Schur form

— S0, need to solve T
" Q'xQ(Q"AQ) +QTAQQTXQ+Q"CQ =0
X =Q"XQ; AT =Q' AQ = lower Schur form

— Can transform AT to upper Schur form via EAT E, where o 1] [4
n X n Exchange matrix. E is orthogonal and symmetric E ={ }
= E%=l and E-!=I
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A J_| Bartels-Stewart Algorihtm - 6 |

» S0, solve
EXEEA' E + EAEEXE + ECE =0
= X,A+A X, +C, =0
O Algorithm steps:
1) A =EATE =A" with rows and columns in reverse order.
2) ECE
3) Solve for X,
4) X =QEX,EQ'
O Advantages of Barter-Stewart algorithm:

1) Faster than iterative method

2) Excellent for repeated solutions and adjoint (also C need not be equal to CT)

3) Cansolve when A is not stable. Need only 4; + 4;# 0. of course, solution 3
won’t be PD in this case. d '3
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d Problems:

1) Disappointing accuracy ~ 4 digits vs 5 digits for iterative. Why?
because scheme generated to accuracy of QR and orthogonality
of Q.
What to do? Use iterative improvement.
Let X,=solution via Bartels-Stewart’s algorithm.
Let the true solution be X = X; + oX
(X + X) A+AT(X; + oX) +C =0
= XA + ATOX+(C+X, A+ ATX) =0
C + X,A + ATX; — residual must be computed in DP
solve for oX using Bartels-Stewart’s algorithm.
already have A = 7/2n3 ops + 1 matrix multiplication
2) Incase when A = stable and C > 0, X need not be PD.
3) More storage needed (= 2-3 n? locations)

[ N N N NS .

4)  More software needed (recall the need for QR algorithm to compute upper g g
Schur form) 4]
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(| Surmmary l

O Background on Lyapunov Equation
O Application of Lyapunov Equation

O Computational methods for solving the Lyapunov Equation

e Direct method
e lterative methods
e Semi-iterative methods
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