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Solution of Lyapunov Equation For 

Continuous and Discrete Systems

 What is a Lyapunov Equation?

 Application of Lyapunov Equation

 Computational methods for solving the Lyapunov Equation

   Direct method

   Iterative methods

   Semi-i

        

     

terative m

          

ethod

       

s
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





Copyright ©2004 by K. Pattipati 3

What is Lyapunov Equation?

 What is Lyapunov Equation?

1

: ;

;

 is asymptotically stable iff 

     for 0,  a PD solution  for 0". 

 

   Continuous-time system

   Discrete-time system:

   Original Lyapunov theorem: "

i i i ii

T

x Ax Bu y Cx

x Ax Bu y Cx

x Ax

S X A X XA S



  

  



    











0

        X=  
TA Ae Se d  



 

 Lyapunov Equation and Stability of Linear Systems

0

       

     

    

   Continuous-time Lyapunov Equation:

   Discrete-time Lyapunov Equation:

   The equations are and arise in the context of

 stability of linear sys

      

 linear 

    tems

T

T

X XA S

XA S

A

X A

  





 


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
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0

is asymptotically stable

iff for S > 0,  a PD solution  for              

 is a 
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Lyapu
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function.

discre   "For 
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( )

i i

T

T i i

i

T

x Ax

X X A XA S

X A S

x x X x

A

v









  













0

yapunov equation is used in estimating the rates

     at which 

   Lyapunov function is used to analyze 

, etc.

   Our inter

 

 Lyapunov cont

est in Lyapunov

rollers,

    

 equation st

 observers

contems from 

x 



 rol

     and filtering applications rather than stability

Lyapunov Equation and Stability
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0

linear feedback control u( ) ( ) that 

"For the continuous-time system, ;

          find a 

            ( ) [ ( ) ( ) ( ) ( )] ; 0,

minimiz

0"

es
T T

x Ax Bu

J

t

u x t Qx t u t Ru t dt Q R

Lx t


 

  









 Lyapunov Equation & Linear Quadratic Regulator (LQR) Problem

 What does J(u) mean?

0"We want 0 from  without using too much control."x x

 For a given L computation of J(u)  solution of Lyapunov equation

     Suppose we take any feedback control ( ) ( ),  where  is known

     What is the associated cost?

        Obviously we need ( )  stable, otherwise 

       Let ( ) 0

T

L
L

x

A
x

u t Lx t L

A BL x x Qx

t
A A BL t e x

  



    

    



                 

Lyapunov Equation and LQR - 1



Copyright ©2004 by K. Pattipati 6

0 0
0

T
0 0 0 0

   Therefore,

          ( ) [ ]

                 [ ]  
0

         where "cost matrix" associated with gain .

   Note that  satisfies

TT
T TL L LL

T
T TLL

L

L

L

A t A t A tA tJ u x e Qe e L RLe dt x

A tA tx e Q L RL e dt x x V x

V L

V





 


  



  the Lyapunov equation:

          0

                 

T T
LL L L

A V V A Q L RL   


* * *  - 0L L L LL V V L V V   How can we pick  ? i.e., ?

        => Solving continuous-time Riccati equation Lectu!..... re 14

 Discrete-time case: ”Given a discrete-time system,

1

0

;

find a linear feedback control  that minimizes

( ) "

                 

i i i

i i

T T

i i i
i

i

x Ax Bu

u Lx

J u x Qx u Ru







 

 

 

Lyapunov Equation and LQR - 2
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0

0

0

     

     

     

Closed-loop system matrix

State in terms of closed-loop system matrix

Cost function can be rewritten in terms of closed-loop system matrix as:

( ) [ ( ) (

i

Li

TT i T
L

i

LA A BL

x A x

J u x A Q L RL






 







  0 0 0

*

0 0

     

     A  

) ]

The cost matrix  satisfies the discrete Lyapunov equation:

*gain the problem of picking min  involve

discrete-time Riccati equati

s

     on    .

i T
L L

L

T
T

L LL L

T

L L
L

A x x V x

V

A V A Q L RL V

L V x V x







  

 

               

                 

Lyapunov Equation and LQR - 3
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Lyapunov Equation and Estimation - 1

 Lyapunov Equation and the Estimation problem

   

   where 

with covariance matrix E{w(t)w(

 is zero mean Gaussian no

)}=W (t- )

   

( )

is

( )

e

( )

   

Consider a  systelinear conti m:

 ( ) cov{ ( )} { ( ) ( )},

nuous-ti

 whe

e

re

m

T

T T

Ax Ew

X t AX t X t A EWE

wx

X t x t E x t x t

  



 



  



  




 
1

where zero mean white Gaussian noise sequence  is 

0

    

with covariance matrix { }

If , then in the steady state is stable

discrete-tFor  systems

                  

me

 

i

T T

i i i
i

T

i j

E

AX XA EWE

x Ax w w

E w w W

A






  







   

               

                 

 s.s covariance of x denoted by  satisfies:
                    

ij

T T
X AXA EWE

X

 


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 Estimation/Filtering in Continuous-time Systems with Continuous-

time Measurements

0

( ) ( ) ( )

ˆ

ˆ /

   

   

   ( )

   

( )

Consider a  system:

Measurement equation

Objective: Generate estimate  continuously.

If t

continuo

here is no noise and we knew , then

us-time linear
A B

y t C t v t

x

x

x u Ew

x

t

d t

x

x

 

 















0

0

0

ˆ ˆ( );

ˆ0 ( )

ˆ /

( ) (0)

 ( ) ( ) ( ) ( ) ( )

   

   

e.g., ( )

                  ;

But, if 0 and  is unstable, then ( ) .

Solution: Use measurements to stabilize.
           

dt x B t x

t x

x dt

A t u
At

t Ae t e t e e e t x t

d t

x

e

e A e t







    







 



ˆ ˆ( ) [ ( ) ]

ˆresidual ( ) ( ) ( ) ( )

( ) ( )

( )

               

                 

x B t K y t C x

v t y t C x Ce t v t

A t u t

t

  

   



Lyapunov Equation and Estimation - 2
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"min   

   

let cov[ ( )] i

imize cov{ ( )} or MMSE in s.s

n

.

 

"

In fact, we can accomplish more than stability!! We can choose 

     to minimize a performance criterion.

.
Now ( ) ( ) ( ) ( )

t

e t

e

K

e t A KC e t Ew Kv t





 

   

*

* *

ss  0 ( - ) ( )

   

               

                 

We need ( - ) stable, so pick 

T T T

KK

A KC A KC EWE KVK

A KC K K K

       

      

 Sensitivity Analysis

output feedback problem, insensitive c

0 ( );

ontrol de ...sign, .PDE,

T T T T

i i i i i i i

i

X
AX X A A X EWE EWE XA X




      



Lyapunov Equation and Estimation - 3
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

Computational Techniques

 Computational Techniques

   

    

   

Direct methods solve 

Iterative methods  sum up terms. Use doubling schemes

Semi-iterative methods use QR metod to reduce  to special

     form and then use  on the modified matri

Ax b

A

Ax b







 







  

x.

1)  Equation has ( 1) / 2 unknowns. Organize  and  

    as vectors

D

.

Re

irect Method

write as 

:

;

n n X S

A x Sv vv



 

11 12 11 12 11 11 21 12 12 11 22 12

21 22 21 22 11 12 21 22 12 12 22 22

11 21 11 11

12 11 22 21 12 12

12 22 22 22

Example :

2 2 0

0 2 2

T
x x a a a x a x a x a x

S
x x a a a x a x a x a x

a a x s

a a a a x s

a a x s

        
                  

     
     

   
     
          

   need ( ) 0k V i jA     
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1 1 1 1

1 1

1 1 1

1 1

; ; : ( )

.

 and S . then

                 Y

   

        

        

        

        define 

Can see as follows:
T T T

T T

A Note V U V U

V X S

XU XU V SU

XU U XU V SU U SU

A U U V V

XU U V

V V

Y V

Y

and   


 

  

 

 

  

 

  



   

  

   

 

  




6

/ ( )

 need  0

   

   

   

   

Can be solved via 

Can solve for multiple 

Direct method requires 

LU decomposition

O( /  operations.

Very  for 6 due to round

24)

bad approa -off erroch

ij ij i j

i j

i

S

y s

S

n

n

 

 

   

  

 







 

   Accur

rs and/or CPU 

     time.

 is not very well controlacy led.

Direct Method
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Iterative Method: DLyap

1 2 3

0

.

discrete Lyapunov equa   First, consider the :

               

 We know that the solution is 

tio

( )

 So

n

2)  ....Generate .... . 

 

"Iterative Metho

         

        

"

  

d n

T

T i i

i

XA QX A

X A QA

X X X X X











 

    



 doubli, sum ng algvia ori the thm.

2

max

2

max

max

( ) .

( )

( )

  Convergence rate

  Actually growth is governed by 

  So,

  Rarely, if ever, do we need more than 10 iterations ( 10 will handle 

So, expect < 25

.99)

          

k
k k

k

k

X A X

F

X A X

k

n







 

 







  
3

 operations.       

TOL

, 1, 2, ...
-5

TOL=10  or so

or test on diagonal elements

 Convergence test 

ii

X X

x i

 

 

X = Q, F = A

T

2

X X+F X F
     F F



Conv.?
YesNo
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 Application to Continuous Lyapunov Equation

( )

(a) Discrete-time 

     Recall  is s.

representation

s solution of /

There are basically two approaches

            

  (b) Bilinear transformation

(a) Discrete-time representatio

         

 n

T

X t

X dX dt A X XA S

 

  

( )  valid for .

0

T TA A A AX t e e Se de   
 


  

0

0

 and 

 
3

 MA just for set up.DDS

 

doubli

   So, pick .5 /  and use algorithms for  and 

   Then use  with 

   

ng scheme

Need ~ 25 

    Als truncation erroo,  in rs

TA A A

TA A A

A

Q

A e e Se d

F e e Se d

e

n

 

 















     

  




( )

min
max min

and Q will give same order of magnitude errors in 

( ) ;    Convergence rate depends on min.real part < 0
AA

X

e e


 
  

Iterative Method: Continuous Lyap - 1
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bigger => faster convergence rate;  too small => t S ro lo e., ub 

 Comments:

 Very simple method (needs only matrix multiplication routine)

 Safe and robust, but too costly in i

(b) Bilinear transforma

nitialization

 Keep .1/

 

 In (a), we have used an exponent

tion

ial tran o

:

sf

A





  



-1

-1

rmation:
                                 

 Suppose, we define ( )( - ) ; 0

              since functions of  commute, we also have:
                             

Idea:

   ( - ) ( )

 

 

 

Ae

A I A I

A
A I A I

  

 

 

    

  

           This is called . Why?

 Because if the transformation is solved for :A

bilinear transformation

Iterative Method: Continuous Lyap - 2
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1

1 1

same form as original  Bil

( )

    

inea

        ( )

( ).( ) /

 

( )( ) / ( ) /

r

( )

 If we substitute  into 0,  we obtain
                    

T

T T

A I A I

A A I A I I

A I I

X I I I I X S

A A X XA S

 

  



 



 


   

         

     



         



   

1

1

1

) (

0

                       ( ) ( ) ( ) ( ) ( ) ( ) 0

                       2 2 ( ) 0

                      Note that since ( ) ( )

( ) ( 2 )

2( )

T T T

T T
X I S

I X I I X I I S I

X I

A I A I

A I A I I

I A I





 

 









  



           

        

   

   

    


1 1

1 1

) ( )

) ( )

discrete-time Lyapunov eq

2 ( 0

So, t uationhis is a  with

2 (
T

T T
X I S A I

I S A I

X A

Q A





 

 

 

 

 

 

    





Iterative Method: Continuous Lyap - 3
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 How to pick τ > 0?

max

min max*

    

    

    

    

 

Recall that ( ) ( ( ) 1) / ( ( ) 1).

We would like to pick   ( ) is minimized to speed up

             convergence.

1
For real roots ( ). ( )  geometric mean

For arbi

i i iA A

A A

  

 

 










   

 

 

i

"heuristically"

      

tary case 1/ | tr( ) | /  can be argued 

1
since want .  Use = min[1,4 / | |]ii

i

A n

n a



 




 

Iterative Method: Continuous Lyap - 4
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 Algorithm using bilinear transformation

-1

1 1

3
    

 

 1.  Pick 
2.  Compute:
        2( - )

2 ( ) ( )

3.  Solve for  using doubling scheme

Note that the set up requires ~ 1.5 multiplications +1 inversion 2.5  
    operations.

 Exce

T

I A I
Q A I S A I

X

n




   

 



  
  

llent method for solving Lyapunov equation!

 Can extend to generalized Lyapunov equation in a straightforward 

manner

0; ,  stable

 is  x ,  is  x ,  is  x  and  is  x 

AX XB C A B

A n n B m m C n m X n m

  

Iterative Method: Continuous Lyap - 5
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0                     (*)   Consider 

 

3)  

       Bartels and Stewart 
 Comm. of the ACM, vol.15, No.9, sept.1972

"Solution of matrix equation "
      

Semi iterative method

. 

      

s

     

T
X XA SA

AX XB C

  








11 12 1

22 2

Find an orthogonal matrix upper Schur form

                

. . .
diagonals are 1x1 or 2x2 blocks 

                          . . .  
and there are  such bl

Idea :

ocks

 
T

p
T

p

pp

Q Q AQ

A A A

Q AQ A A A
p

A

 

 
 
  
 
  

  

                                                                                             

 and  to obtain

                     . ( )

  Pre- and post multipy(*) by            T

T T T T T T

Q

Q XQ Q AQ Q AQ Q XQ Q

Q

 



   
0

                     0

  Q: Is it easier to solve this equation?

  A: Yes!! Can be solved in pieces.  Recall forward elimination!!

           

           

T

SQ

X A A X S



   





Semi-iterative Bartels-Stewart Algorihtm - 1
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11 12 1
11 12 1 1

21 22 2 22 2

1 2

1

11

12 22

1 2

 Partition blocks of  conformal with  so that            

. . .
. .

. . . 0 . . .
               

. . .
0 . . .

. . .

0
 

p
l p

p p

llk k kp

pp
p pp

T

T T

T

k

X A

X X X
A A A A

X X X A A

AX X X
A

X X

A

A A

A A



 
  
     
      



11 12 1

11 1

21 22 2

21 2

1 2

1

11

. Solve for each sub-bloc

Not

k 

   that:e

. . .
. . .

. . .
. . . 0

. . ... .
. . .

. . .. . .

            
           

p

p

p

pT T
k k kpk kk

p ppT T
p ppp pp

klX

X X X
S S

X X X
S S

X X XA
S S

X XA A

   
    
          
      

     




11 11 11 11 11

11 11

11 12 12 22 11 12 12

11 12 12 

0

 

1. 0( 1, 1)

 via algebraic symmetric formula.  either 2x2 or 1x1.

2. 

 is known, so the unknown can be solved via:

( 1, 1)

T

A X A A X S

X A A X S k l

X X

X

X A X

k l   

    



 
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12 22 11 12 12 11 12            ( ) 0

      Must solve an equation of the form  0

            1.  1x1 and  1x1  

            2.  1x1 and  2x2

            3.  2x2 and  1x1 

            4. 

T

X A A X S X A

XA B X C

A B

A B

A B

A

   

  

1 4 1 411 12 11 12

2 3 2 321 22 21 22

1 4..  algebraically by expand

 2x2 and  2x2

 For each case, we can solve for 

 ; ; ;            

                         
          x

B

x

c c x xa a b b
A B C X

c c x xa a b b

      
         
       



i

1 1 11 11

1 11 12
11

2 21 22

11

ing equation.

( ) ( ) 0.

                       Case 1: / ( )

1 1
                       Case 2: 0

2 2

 Solution exists provided           jA B

x c a b

x x c
a

x x c

a

b b

b b

  

  

     
       

     





 
  

11 12 1 1

21 22 2 2

                       Case 3: Similar to 2

b b x c

b b x c

     
      

     
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Case4:

11 11 21 21 1 1

12 11 22 21 2 2

12 22 22 12 3 3

12 21 22 11 4 4

0

0

0

0

a b b a x c

b a b a x c

a a b b x c

a b a b x c

     
     


      
     
     

     

 So, we work across rows 11 12 1 22,    px x x x   

 In general, consider block kl; l  k. solve by writing subequation for Xkl.

Have Xij that have already been computed

1 1

1 1

1 1

0

0

l k
T

ki il jk jl kl

i j

l k
T T

kl ll kk kl kl ki il jk jl

i j

X A A X S

X A A X S X A A X

 

 

 

  

    

 

 
 Solution for subblock is fast and accurate via LU decomposition

 Then, desired solution .TX QXQ 
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• Computational load = 2n3 + 4n3 + 7n3/2

 A  Hessenberg form  2n3

 Hessenberg  Schur form  4n3

 Algebraic solution + forming S, X from 
37 / 2X n

• Note if want to solve XA+ AT X + Si=0, i = 1, 2, … This can be accomplished  

in ~ 7n3/2 (~30% of time to solve for i =1).

• Solution of adjoint equation XAT + AX + C = 0 after having solved 

original

 This arises in optimal output feedback and insensitive control system 

design problems

 Have A = QTAQ = upper Schur form

 So, need to solve

 Can transform       to upper Schur form via           , where                                  

n x n Exchange matrix. E is orthogonal and symmetric 

 E2=I and E-1=I

  0

;   lower Schur form

T
T T T T T

T T T

Q XQ Q AQ Q AQQ XQ Q CQ

X Q XQ A Q AQ

  

  

TA TEA E
0 1

1 0
E

 
  
 
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• So, solve 

1 1 1 1 1

0

 0

T

T

EXEEA E EAEEXE ECE

X A A X C

  

   

   

  

 Algorithm steps:

1

1

1

      with rows and columns in reverse order.

    

    Solve for 

1)

2)

   

3

 

)

4)

T T

T

A EA E A

ECE

X

X QEX EQ

 



  







 Advantages of Barter-Stewart algorithm:

1) Faster than iterative method

2) Excellent for repeated solutions and adjoint (also C need not be equal to CT)

3) Can solve when A is not stable. Need only i + j  0. of course, solution 

won’t be PD in this case.
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 Problems:

1) Disappointing accuracy  4 digits vs 5 digits for iterative. Why?

because scheme generated to accuracy of QR and orthogonality  

of Q. 

What to do? Use iterative improvement.

Let X1=solution via Bartels-Stewart’s algorithm.

Let the true solution  be X = X1 + X

(X1 + X) A+AT(X1 + X) + C = 0

 XA + ATX+(C+X1A + ATX1) = 0

C + X1A + ATX1  residual must be computed in DP

solve for X using Bartels-Stewart’s algorithm.

already have A  7/2n3 ops + 1 matrix multiplication

2) In case when A = stable and C  0, X need not be PD.

3) More storage needed ( 2-3 n2 locations)

4) More software needed (recall the need for QR algorithm to compute upper 

Schur form)

Problems with Bartels-Stewart
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Summary

 Background on Lyapunov Equation

 Application of Lyapunov Equation

 Computational methods for solving the Lyapunov Equation

   Direct method

   Iterative methods

   Semi-i

        

     

terative m

          

ethod

       

s

 








