Lecture 14: Riccati Equation Solution for Optimal Control Problem

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435
Adv Numerical Methods in Sci Comp

Fall 2008
October 29, 2008

Outline of Lecture 14

\square Continuous-time Linear Quadratic Regulator (LQR) problem
\square Kleinman's algorithm for the Algebraic Riccati Equation (ARE)

- properties
\square Discrete-time LQR problem
- Schur method for solving the ARE

Infinite Horizon Continnuous tìme LOR problem

- Problem
- Consider a linear time-invariant system:

$$
\underline{\dot{x}}=A \underline{x}+B \underline{u} ; \underline{x}(0)=\underline{x}_{0}
$$

- Want to find an optimal linear control law:

$$
\underline{u}=-L \underline{x} \underline{\ni} \int_{0}^{\infty}\left[\underline{x}^{T} Q \underline{x}+\underline{u}^{T} R \underline{u}\right] d t=J(u) \text { is a minimum }
$$

- Pick any gain $L_{0} \ni A-B L_{0}=\bar{A}_{0}$ is stable \ldots will come back to the problem of picking L_{0} later.

Recall that $J_{0}=\underline{x}_{0}^{T} V_{0} \underline{x}_{0}$ where V_{0} satisfies the Lyapunov equation

$$
\begin{equation*}
0=\bar{A}_{0}^{T} V_{0}+V_{0} \bar{A}_{0}+Q+L_{0}^{T} R L_{0} \tag{1}
\end{equation*}
$$

- Objective: want to find L^{*} that gives the smallest PD matrix P so that

$$
J^{*}=\underline{X}_{0}^{T} P \underline{X}_{0} \text { is a minimum }
$$

Newton's Method for ARE - 1

- We seek an iterative process: $L_{0} \rightarrow L_{1} \rightarrow \ldots \rightarrow L_{k} \rightarrow \ldots \rightarrow L^{*}$
- Find L_{1} next that is better than L_{0}, that is,

$$
\begin{equation*}
0=\bar{A}_{1}^{T} V_{1}+V_{1} A_{1}+Q+L_{1}^{T} R L_{1} \tag{2}
\end{equation*}
$$

- Note that

$$
\bar{A}_{0}=A-B L_{0}=A-B L_{1}+B\left(L_{1}-L_{0}\right)=\bar{A}_{1}-B \delta L \text { where } \delta L=\left(L_{0}-L_{1}\right)
$$

- Eq. (1) can be written in terms of \bar{A}_{1} as:

$$
0=\bar{A}_{1}^{T} V_{0}+V_{0} \bar{A}_{1}-\delta L^{T} B^{T} V_{0}-V_{0} B \delta L+Q+L_{0}^{T} R L_{0}
$$

- subtract Eq. (2) from Eq. (1), that is (1)-(2), to obtain:

$$
0=\bar{A}_{1}^{T} \delta V+\delta V \bar{A}_{1}-\delta L^{T} B^{T} V_{0}-V_{0} B \delta L+L_{0}^{T} R L_{0}-L_{1}^{T} R L_{1} ; \text { where } \delta V=V_{0}-V_{1}
$$

- this equation can be simplified to:

$$
0=\overline{\bar{A}}_{1}^{T} \delta V+\delta V \bar{A}_{1}+\delta L^{T} R \delta L-\delta L^{T}\left(B^{T} V_{0}-R L_{1}\right)-\left(B^{T} V_{0}-R L_{1}^{T}\right) \delta L
$$

- so, if $L_{1}=R^{-1} B^{T} V_{0}$ then

$$
0=\bar{A}_{1}^{T} \delta V+\delta V \bar{A}_{1}+\delta L^{T} R \delta L
$$

Newton's Method for ARE - 2

\Rightarrow if \bar{A}_{1} is stable $\delta V \geq 0$ or $V_{1} \leq V_{0}$
-so, for every \underline{x}_{0}, we have $\underline{x}_{0}^{T} V_{0} \underline{x}_{0} \geq \underline{x}_{0}^{T} V_{1} \underline{x}_{0}$

- but, is \bar{A}_{1} stable? Yes!!
- from (1)

$$
\bar{A}_{1}^{T} V_{0}+V_{0} \bar{A}_{1}-\delta L^{T} R L_{1}-L_{1}^{T} R \delta L+Q+L_{0}^{T} R L_{0}=0
$$

or

$$
\bar{A}_{1}^{T} V_{0}+V_{0} \bar{A}_{1}+\delta L^{T} R \delta L+L_{1}^{T} R L_{1}+Q=0
$$

can also see this form $V_{0}=V_{1}+\delta V$. Thus, \bar{A}_{1} is stable by Lyapunov theorem, if \bar{A}_{0} does.

- Continuing the iterative process with
$L_{k+1}=R^{-1} B^{T} V_{k}, k=0,1,2, \ldots$,
we obtain $V_{k+1}<V_{k}, k=0,1,2, \ldots$,
- $\left\{V_{k}\right\}$ are monotonically decreasing and bounded below by zero.
$\Rightarrow \lim _{k \rightarrow \infty} V_{k} \rightarrow P$ exists andis PD

Newton's Method for ARE - 3

- consequently, $L^{*}=R^{-1} B^{T} P$ is the converged gain
- Equation for $P=$ cost matrix associated with L^{*}

$$
\begin{aligned}
& \left(A-B R^{-1} B^{T} P\right)^{T} P+P\left(A-B R^{-1} B^{T} P\right)+Q+P B R^{-1} B^{T} P=0 \\
& \text { (or) } A^{T} P+P A+Q-P B R^{-1} B^{T} P=0
\end{aligned}
$$

- The above Equation is called the Algebraic Ricatti equation (ARE)
- Thus, P is the unique PD solution of ARE
- LQR Result: The optimal control is $\underline{u}=-L^{*} \underline{x}$ where $L^{*}=R^{-1} B^{T} P$, where P is the unique PD solution of ARE. Well known result in optimal control......Linear quadratic regulator (LQR) problem.

Kleinman's Algorithm

- Kleinman's Algorithm for ARE (Newton's Method)
pick $L_{0} \ni A_{0}$ is stable (to be addressed later)
Dofor $k=0,1,2 \ldots$.

$$
\text { solve } \bar{A}_{k}^{T} V_{k}+V_{k} \bar{A}_{k}+Q+L_{k}^{T} R L_{k}=0
$$

$L_{k+1}=R^{-1} B^{T} V_{k} ; \bar{A}_{k+1}=A_{k}-B L_{k+1}$
check for convergence
if $\operatorname{tr} \delta V \leq T O L . \operatorname{tr}\left(V_{k}\right)$,
stop, found P, L^{*}
endif
end DO

Quadratic Convergence - 1

1. $P \leq V_{k} \forall k$ infact, can show quadratic convergence

$$
\begin{aligned}
& \bar{A}_{k}^{T} V_{k}+V_{k} \bar{A}_{k}+Q+L_{k}^{T} R L_{k}=0 \\
& \bar{A}^{*} P+P \bar{A}^{*}+Q+L^{* T} R L^{*}=0 \\
& \bar{A}_{k}^{T}\left(V_{k}-P\right)+\left(V_{k}-P\right) \bar{A}_{k}+\left(L_{k}-L^{*}\right)^{T} R\left(L_{k}-L^{*}\right)=0 \\
& \Rightarrow\left(V_{k}-P\right)=\int_{0}^{\infty} e^{\bar{A}_{k}^{T} \sigma}\left(L_{k}-L^{*}\right)^{T} R\left(L_{k}-L^{*}\right) e^{\bar{A}_{k} \sigma} d \sigma
\end{aligned}
$$

- But, know that

$$
\begin{aligned}
& L_{k}=R^{-1} B^{T} V_{k-1} \text { and } L^{*}=R^{-1} B^{T} P \\
& \Rightarrow\left(V_{k}-P\right)=\int_{0}^{\infty} e^{\bar{A}_{k}^{T} \sigma}\left(V_{k-1}-P\right)^{T} B R^{-1} B^{T}\left(V_{k-1}-P\right) e^{\bar{A}_{k} \sigma} d \sigma
\end{aligned}
$$

- Taking norms on both sides:

$$
\begin{aligned}
\left\|V_{k}-P\right\| & \leq \int_{0}^{\infty}\left\|e^{\bar{A}_{k} \sigma}\right\|^{2}\left\|B R^{-1} B^{T}\right\|\left\|V_{k-1}-P\right\|^{2} d \sigma \\
& =\left\|V_{k-1}-P\right\|^{2} \cdot\left\|B R^{-1} B^{T}\right\| \int_{0}^{\infty}\left\|e^{\bar{A}_{k} \sigma}\right\|^{2} d \sigma
\end{aligned}
$$

Quadratic Convergence - 2

- So, in the limit we have quadratic convergence.
- Rate depends on $\left\|B R^{-1} B^{T}\right\|$ and on how stable \bar{A}_{k} is.
- When V_{k} is far from P, we find linear convergence.

2. Algorithm is what you would get if you applied Newton's method to solve ARE directly.

- But, we have also shown the need for stability of \bar{A}_{k} and monotonicity.

3. P is the steady state solution of the Ricatti differential equation
$\dot{P}=P A+A P+Q-P B R^{-1} B^{T} P$
with $P(0)=$ arbitary PSD

Additional Insights - 2

7. If have "good" guess for , sảy (s \hat{L} tabilizing) pick $L_{0}=\hat{L}$
8. If have "good" guess for , slif \quad, \widehat{P} pick $L_{0}=R^{-1} B^{T} \widehat{P}$, is stable.
9. If the process stops before converg ence, have better than whe n started.
10. If want to minimize $\quad \lim _{T \rightarrow \infty}\left(\int_{0}^{T} \underline{x}^{T} Q \underline{x}+\underline{u}^{T}\right) \underline{u} d t \in E \underline{x}^{T} Q \underline{x}+\underline{u}^{T} R \underline{u}$ for the linear stochastic system:

$$
\underline{x}=A \underline{x}+B \underline{u}+E \underline{w}
$$

where \underline{w} is zero mean white Gaussian noise vector with covariance matrix W.

- Then the cost can be rewritten as:

$$
J=E\left\{\underline{x}^{T} Q \underline{x}+\underline{u}^{T} R \underline{u}\right\} \text { and } J^{*}=\operatorname{tr}\left(P E W E^{T}\right)
$$

How to Pick Initial Gains? - 1

- Again same control law.
- This is the so called certainty equivalence(CE) property.
\square One unanswered question: How to pick L_{0} ?
- We know from Lecture 3 that

$$
L_{0}=B^{T} e^{A^{T} T}\left[\int_{0}^{T} e^{A \sigma} B B^{T} e^{A^{T} \sigma} d \sigma\right]^{\dagger} e^{A T} \text { stabilizes } A-B L_{0}
$$

- Replace $B \rightarrow \widetilde{B}=B R^{-1 / 2}$
- Since $R>0, R^{-1 / 2}$ always exists

$$
L_{0}=R^{-1 / 2} B^{T} e^{A^{T} T}\left[\int_{0}^{T} e^{A \sigma} B R^{-1} B^{T} e^{A^{T} \sigma} d \sigma\right]^{\dagger} e^{A T}
$$

stabilizes $A-B R^{-1 / 2} L_{0}^{0}$

$$
\begin{aligned}
& \text { or } L_{0}=R^{-1} B^{T} e^{A^{T} T}\left[\int_{0}^{T} e^{A \sigma} B R^{-1} B^{T} e^{A^{T} \sigma} d \sigma\right]^{\dagger} e^{A^{T} T} \\
& \text { stabilizes } A-B L_{0} \forall R>0
\end{aligned}
$$

How to Pick Initial Gains? - 2

- Note that L_{0} stabilizes A and is of the form $L_{0}=R^{-1} B^{T} V_{-1}$, where

$$
V_{-1}=e^{A^{T} T}\left[\int_{0}^{T} e^{A \sigma} B R^{-1} B^{T} e^{A^{T} \sigma} d \sigma\right]^{\dagger} e^{A T}
$$

\square The computation of V_{-1} proceeds as follows:

1. Compute $\int_{0}^{T} e^{A \sigma} B R^{-1} B^{T} e^{A^{T} \sigma} d \sigma=W(T) \ldots .$. Lecture 3
2. Factor $W=\Gamma \Gamma^{T} ; \Gamma=n \times p ; p=\operatorname{rank} W$
3. Compute Γ^{\dagger}. $W^{\dagger}=\left(\Gamma^{\dagger}\right)^{T} \Gamma^{\dagger}$
4. $Z=\Gamma^{\dagger} e^{A T} ; V_{-1}=Z^{T} Z$

How to Pick Initial Gains? - 3

\square Note that in theory T is arbitrary. But, in practice, try to pick $T \ni V_{-1}$ is close to $P \ldots$ an open problem.

- Usually, the following choices work:

1. $T=1$
2. $\quad T=2 /\|A\| \approx 2 /\left|\lambda_{\max }(A)\right|$
3. $\quad T=2 /\left|\lambda_{\text {avg }}(\bar{A})\right|=2 n /|\operatorname{tr}(\bar{A})|$

- For 3), how to get $\operatorname{tr}(\bar{A})$?
assume $B R^{-1} B^{T}=S$ has an inverse.
Note that

$$
\begin{aligned}
& \bar{A}^{T} S^{-1} \bar{A}=\left(A^{T}-P S\right) S^{-1}(A-S P) \\
& \quad=A^{T} S^{-1} A-P A-A^{T} P+P S P=A^{T} S^{-1} A+Q
\end{aligned}
$$

take $\operatorname{tr}\left(\bar{A}^{T} S^{-1} \bar{A}\right)$ to obtain:

$$
\operatorname{tr}\left(\bar{A} \bar{A}^{T} S^{-1}\right)=\operatorname{tr}\left(\left(A A^{T}+Q S\right) S^{-1}\right)
$$

How to Pick Initial Gains? - 4

Use

$$
\operatorname{tr}\left(A A^{T}+Q S\right) \text { as an estimate of } \operatorname{tr}\left(\bar{A} \bar{A}^{T}\right)=\sum_{i=1}^{n} \sigma_{i}^{2}
$$

where $\left\{\sigma_{i}\right\}$ are singular values of \bar{A}
further use

$$
\begin{aligned}
& \frac{1}{n} \sqrt{\operatorname{tr}\left(A A^{T}+Q S\right)} \text { as an estimate of }\left|\lambda_{\text {avg }}(\bar{A})\right| \\
& \Rightarrow T=\frac{2 n}{\sqrt{\operatorname{tr}\left(A A^{T}+Q S\right)}}
\end{aligned}
$$

- If V_{-1} or L_{0} fails to stabilize, double T and continue the process

Discrete ARE (DARE)

- Infinite Horizon Discrete LQ regulator problem
] Problem
- Consider a discrete-time system:

$$
\underline{x}_{i+1}=\Phi \underline{x}_{i}+B \underline{u}_{i}
$$

- Find a linear feedback control law $\underline{u}_{i}=-L \underline{x}_{i}$ to minimize

$$
J=\sum_{i=0}^{\infty}\left[\underline{x}_{i}^{T} Q \underline{x}_{i}+\underline{u}_{i}^{T} R \underline{u}_{i}\right]
$$

. We can develop an algorithm in parallel to the continuous case.

- Suppose have gain L_{k}, then

$$
J_{k}=\underline{x}_{0}^{T} V_{k} \underline{x}_{0}
$$

where V_{k} satisfied the algebraic Riccati equation:

$$
V_{k}=\bar{\Phi}_{k}^{T} V_{k} \bar{A}^{T} \bar{\Phi}_{k}+Q+L_{k}^{T} R L_{k}
$$

where $\bar{\Phi}_{k}=\bar{\Phi}-B L_{k}$ stable

Newton's Mathod for DARE

$\square \quad$ LQR Results: optimal control $\underline{u}_{i}^{*}=-\left(R+B^{T} P B\right)^{-1} B^{T} P \Phi \underline{x}_{i}$ (some times written as $-L \Phi \underline{x}_{i}$), where P is the unique $P D$ solution of the discrete ARE

$$
\begin{aligned}
P & =\Phi^{T}\left[P-P B\left(R+B^{T} P B\right)^{-1} B^{T} P\right] \Phi+Q \\
& =\Phi^{T} P(I+S P)^{-1} \Phi+Q \\
& =\Phi^{T}\left(P^{-1}+S\right)^{-1} \Phi+Q \text { where } S=B R^{-1} B^{T}
\end{aligned}
$$

\square Iterative algorithm
Pick $L_{0} \ni \bar{\Phi}_{0}$ is stable
Do for $k=0,1,2, \ldots$

$$
\text { solve } \quad \begin{aligned}
V_{k} & =\bar{\Phi}_{k}^{T} V_{k} \bar{\Phi}_{k}+Q+L_{k}^{T} R L_{k} \\
L_{k+1} & =\left(R+B^{T} V_{k} B\right)^{-1} B^{T} V_{k} \Phi \\
\bar{\Phi}_{k+1} & =\Phi-B L_{k+1}=\left(I+S V_{k}\right)^{-1} \Phi
\end{aligned}
$$

check for convergence:

$$
\text { If } \operatorname{tr}\left(\delta V_{k}\right) \leq T O L \cdot \operatorname{tr}\left(V_{k}\right)
$$

$$
\text { stop. obtained } P=V_{k} \text { and } L^{*}=L_{k+1}
$$

end if
end Do

Algorithmic Properties - 1

[. Properties much the same as in the continuous case

- Quadratic convergence
- Takes ~ 10 iterations
- $J\left(u^{*}\right)=\underline{x}_{0}{ }^{T} P \underline{x}_{0}$.
- Also, P is the steady state solution of the difference Riccati equation

$$
P_{i+1}=\Phi^{T}\left[P_{i}-P_{i} B\left(R+B^{T} P_{i} B\right)^{-1} B^{T} P_{i}\right] \Phi+Q
$$

where $\left[P_{i}-P_{i} B\left(R+B^{T} P_{i} B\right)^{-1} B^{T} P_{i}\right]$ is the update

- Recall that this is similar to the update - propagate equation of Kalman filter with the associations:

$$
\begin{aligned}
& -\Phi \rightarrow \Phi^{T} \\
& -B \rightarrow C^{T}
\end{aligned}
$$

Algorithmic Properties - 2

- If we are only interested in $P=\Phi^{T} P(I+S P)^{-1} \Phi+Q$, use

$$
V_{k}=\bar{\Phi}_{k}^{T} V_{k} \bar{\Phi}_{k}+Q+L_{k}^{T} R L_{k}+\bar{\Phi}_{k}^{T} V_{k-1} S V_{k-1} \bar{\Phi}_{k}
$$

where $\bar{\Phi}_{k}=\left(I+S V_{k-1}\right)^{-1} \Phi$ and where V_{-1} is picked $\ni \bar{\Phi}_{0}$ is stable.

Initialization (Kleinman, IEEE Trans. On AC, June 1974)

- $M>n$ (power of 2) arbitrary
- $L_{0}=\left(R+B^{T} V_{-1} B\right)^{-1} B^{T} V_{-1} \Phi$

$$
V_{-1}=\left(\Phi^{T}\right)^{M}\left[\sum_{i=0}^{M-1} \Phi^{k} S\left(\Phi^{T}\right)^{k}\right]^{\dagger} \Phi^{M}
$$

Schur Method for solving ARE

- Consider the continuous time $A R E$

$$
A^{T} P+P A+Q-P S P=0 ; S=B R^{-1} B^{T}
$$

We can show that

$$
\left[\begin{array}{l}
\underline{\dot{x}}(t) \\
\underline{\dot{p}} \\
\underline{(})
\end{array}\right]=\left[\begin{array}{cc}
A & -S \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
\underline{x}(t) \\
\underline{p}(t)
\end{array}\right] \text { with } p(0)=P(0) x(0) ; \underline{p}(t)=\text { costate }
$$

These are the so-called two-point boundary value problem (TPBVP) equations

- Then $p(t)=P(t) \underline{x}(t)$, where $P(t)$ satisfies the Riccati differential equation

$$
\dot{P}=A^{T} P+P A+Q-P S P
$$

- The matrix $Z=\left[\begin{array}{cc}A & -S \\ -Q & -A^{T}\end{array}\right]$ is called the Hamiltonian

Hamiltonian Properties - 1

$$
J^{T} Z^{T} J=-Z
$$

$$
\text { where } J=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]
$$

$$
J^{T} Z J=-Z^{T}
$$

$$
\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
A & -S \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
S & A \\
A^{T} & -Q
\end{array}\right]=\left[\begin{array}{cc}
-A^{T} & Q \\
S & A
\end{array}\right]=-Z^{T}
$$

- Note $\operatorname{tr}(Z)=0 \Rightarrow$ Eigen values are symmetrically disposed around the origin
- Indeed if $\lambda_{i}(Z)$ is an Eigen value of Z, so is $-\lambda_{i}(Z)$
- Furthermore, same multiplicity

Hamiltonian Properties - 2

\square Suppose $\binom{\underline{a}}{\underline{b}}$ is an Eigen vector of Z for λ_{i}
Then, $\left(\begin{array}{cc}A & -S \\ -Q & -A^{T}\end{array}\right)\binom{\underline{a}}{\underline{b}}=\lambda_{i}(\underline{\underline{a}}) \Rightarrow \begin{gathered}A \underline{a}-S \underline{b}=\lambda_{i} \underline{a} \\ -Q \underline{a}-A^{T} \underline{b}=\lambda_{i} \underline{b}\end{gathered}$
Note that

$$
\left(\begin{array}{cc}
A^{T} & -Q \\
-S & -A
\end{array}\right)\binom{-b}{a}=-\lambda_{i}\binom{-b}{a} \Rightarrow \begin{gathered}
-A^{T} \underline{b}-Q \underline{a}=\lambda_{i} \underline{b} \\
S \underline{b}-A \underline{a}=-\lambda_{i} \underline{a}
\end{gathered}
$$

So, $\binom{-b}{a}$ is also an eigen value of Z^{T}
since $\lambda_{i}(Z)=\lambda_{i}\left(Z^{T}\right) \Rightarrow \lambda_{i},-\lambda_{i}$ are eigen values of Z.

Schur Method for Solving ARE

\square Find an orthogonal transformation $Q(2 n \times 2 n)$

$$
Q^{T} Z Q=\tilde{Z}=\left(\begin{array}{cc}
\tilde{Z}_{11} & \tilde{Z}_{12} \\
0 & \tilde{Z}_{22}
\end{array}\right) \text {, where } \tilde{Z} \text { is an upper Schur form (real) }
$$

\square Moreover, it is possible to arrange such that the real parts of the spectrum of \tilde{Z}_{11} are negative, while those of \tilde{Z}_{22} are positive
\square Write Q such that it is conformal with Z.

$$
Q=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)
$$

Theory Behind Schur Method - 1

- Theorem:

1. Q_{11} is invertible
2. $P=Q_{21} Q_{11}^{-1}$, and P is symmetric PD matrix
3. $\lambda_{i}\left(Z_{11}\right)=\lambda_{i}\left(A-B L^{*}\right)=\lambda_{i}(A-S P)=$ eigen values of the closed loop system

- Proof:

Let T be

$$
T^{-1} Z T=\left(\begin{array}{cc}
-\Lambda & 0 \\
0 & \Lambda
\end{array}\right), \Lambda \text { can be complex }
$$

but, $\Lambda=$ diagonal matrix with postive real parts
then, $\quad Z\binom{T_{11}}{T_{21}}=-\binom{T_{11}}{T_{21}} \Lambda \quad$ and $\quad Z\binom{Q_{11}}{Q_{21}}=\binom{Q_{11}}{Q_{21}} \tilde{Z}_{11}$

Theory Behind Schur Method - 2

\square Proof (contd.):

$$
\begin{align*}
& \operatorname{Let}^{-1} \tilde{Z}_{11} \Gamma=-\Lambda \\
& \Rightarrow Z\binom{Q_{11}}{Q_{21}} \Gamma=\binom{Q_{11}}{Q_{21}} \Gamma \Gamma^{-1} \tilde{Z}_{11} \Gamma=-\binom{Q_{11}}{Q_{21}} \Gamma \Lambda \tag{2}\\
& \Rightarrow\binom{Q_{11}}{Q_{21}} \Gamma=\binom{\mathrm{T}_{11}}{\mathrm{~T}_{21}} \mathrm{D} \text {, where D is a diagonal matrix with } \pm 1 \text { 's } \\
& \binom{Q_{11}}{Q_{21}}=\binom{\mathrm{T}_{11}}{\mathrm{~T}_{21}} \mathrm{D}^{-1}
\end{align*}
$$

Since $\mathrm{T}_{21} \mathrm{~T}_{11}^{-1}$ solves Ricatti equation, so does $Q_{21} Q_{11}^{-1}$. Why ?
[] Theorem: (Potter, 1963) $T_{21} T_{11}^{-1}$ solves Riccati equation

- Proof:

Let $G=A-S P=$ closed-loop matrix.
then $P G=-\left(Q+A^{T} P\right)$
Let U be the set of Eigen vectors of $\bar{A}=A-S P$.

Theory Behind Schur Method - 3

$$
\begin{align*}
& \text { Then } U^{-1} G U=-\Lambda \Rightarrow G U=-U \Lambda \tag{1}\\
& \qquad P G U=-\left(Q+A^{T} P\right) U \tag{2}\\
& \text { Let } P U=V \Rightarrow P G U=-V \Lambda=-Q U-A^{T} V \tag{3}\\
& \text { Also, } G U=A U-S P U=A U-S V \tag{4}
\end{align*}
$$

From (3) and (4), we have

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & -S \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
U \\
V
\end{array}\right]=-\left[\begin{array}{l}
U \\
V
\end{array}\right] \Lambda} \\
& \Rightarrow\left[\begin{array}{l}
U \\
V
\end{array}\right] \text { are the eigen vectors of } Z \text { corresponding to }-\Lambda \\
& \Rightarrow P=V U^{-1}=\mathrm{T}_{21} \mathrm{~T}_{11}^{-1}=Q_{21} Q_{11}^{-1}
\end{aligned}
$$

Why Schur \& NOT Potter's Method?

\square Computing via Eigen vector method is bad because the Eigen vector computation leads to numerical instabilities
\square However, Schur method is OK because Q is orthogonal

- So, solve $P Q_{11}=Q_{21}$ via $L U$ decomposition

$$
Q_{11}^{T} P=Q_{21}^{T}
$$

- Computational Load
- Transform $Z \rightarrow$ upper Hessenberg: $5(2 n)^{3} / 3$
- Upper Hessenberg \rightarrow Upper Schur $=4 \sigma(2 n)^{3}=48 n^{3} ; \sigma=1.5$
- Solution $P Q_{11}=Q_{21}$ via $L U$ decomposition $\Rightarrow 4 n^{3} / 3$
\Rightarrow So, total computational load $=63 n^{3}$
$\Rightarrow 1 / 3$ to $1 / 4$ of the iterative method

Summary

\square Continuous-time Linear Quadratic Regulator (LQR) problem
\square Kleinman's algorithm for the Algebraic Riccati Equation (ARE)

- properties
\square Discrete-time LQR problem
- Schur method for solving the ARE

