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Outline of Lecture 14

 Continuous-time Linear Quadratic Regulator (LQR) problem

 Kleinman’s algorithm for the Algebraic Riccati Equation (ARE)

- properties 

 Discrete-time LQR problem

 Schur method for solving the ARE
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• Problem

- Consider a linear time-invariant system:

- Want to find an optimal linear control law:

Infinite Horizon Continuous time 

LQR problem

0; (0)x Ax Bu x x  

0

[ ] ( ) isa minimumT Tu Lx x Qx u Ru dt J u


    

• Pick any gain                                is stable … will come back to the 

problem of picking       later. 

• Objective: want to find     that gives the smallest PD matrix P so that

0 0 0L A BL A  

0L

*L

*

0 0 isa minimum.TJ X PX

0 0 0 0 0

0 0 0 0 0 0

Recall that where satisfies theLyapunovequation

0 (1)

T

T T

J x V x V

A V V A Q L RL



   
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• We seek an iterative process:

- Find     next that is better than      , that is,

- Note that

- Eq. (1) can be written in terms of     as:

- subtract Eq. (2) from Eq. (1), that is (1)-(2), to obtain:

- this equation can be simplified to:

- so, if 

*

0 1 ... ...kL L L L    

1L 0L

1 1 1 1 1 10 (2)T TA V V A Q L RL   

0 0 1 1 0 1 0 1( ) ; ( )A A BL A BL B L L A B L where L L L          

1A

1 0 0 1 0 0 0 00 T T T TA V V A L B V V B L Q L RL      

1 1 0 0 0 0 1 1 0 10 ;T T T T TA V VA L B V V B L L RL L RL where V V V           

1 1 0 1 0 10 ( ) ( )T T T T T TA V VA L R L L B V RL B V RL L           

1 10 T TA V VA L R L     

1

1 0 thenTL R B V

Newton’s Method for ARE - 1
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- from (1)

can also see this form                       Thus,      is stable by Lyapunov theorem, 

if         does.

- Continuing the iterative process with

- are monotonically decreasing and bounded below by zero.

1 1 0

0 0 0 0 0 1 0

1

if isstable 0

so, for every ,wehave

but,is stable?Yes!!

T T

A V orV V

x x V x x V x

A

  

 



1 0 0 1 1 1 0 0

1 0 0 1 1 1

0

0

T T T T

T T T

A V V A L RL L R L Q L RL

or

A V V A L R L L RL Q

 

 

     

    

0 1 .V V V  1A

0A

1

1

1

, 0,1,2,...,

weobtain , 0,1,2,...,

T

k k

k k

L R B V k

V V k







 

 

{ }kV

lim existsandis PDk
k

V P


 

Newton’s Method for ARE - 2
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• Equation for  P = cost matrix associated with L*

1 1 1

1

( ) ( ) 0

( ) 0

T T T T

T T

A BR B P P P A BR B P Q PBR B P

or A P PA Q PBR B P

  



     

   

- The above Equation is called the Algebraic Ricatti equation (ARE)

- Thus, P is the unique PD solution of ARE

• LQR Result: The optimal control is                                                  

where P is the unique PD solution of ARE.  Well known result in  

optimal control……Linear quadratic regulator (LQR) problem.

* * 1 ,Tu L x whereL R B P  

- consequently,                        is the converged gain* 1 TL R B P

Newton’s Method for ARE - 3
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Kleinman’s Algorithm 

0 0

1

1 1 1

*

pick isstable(tobeaddressed later)

Dofor 0,1,2....

solve 0

;

check for convergence

if . ( ),

stop,found ,

endif

end DO

T T

k k k k k k

T

k k k k k

k

L A

k

A V V A Q L RL

L R B V A A BL

tr V TOL tr V

P L





  





   

  



• Kleinman’s Algorithm for ARE (Newton’s Method)
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1. infact, can show quadratic convergence

Quadratic Convergence - 1

kP V k 

* * * *

* *

* *

0

1 * 1

1

1

1 1

0

0

0

( ) ( ) ( ) ( ) 0

( ) ( ) ( )

But, know that

and

( ) ( ) ( )

Ta

T T

k k k k k k

T

T T

k k k k k k

A AT

k k k

T T

k k

A AT T

k k k

T

T
k k

T
k k

A V V A Q L RL

A P PA Q L RL

A V P V P A L L R L L

V P e L L R L L e d

L R B V L R B P

V P e V P BR B V P e d

 

 







 






 

   

   

      

    



 

    







2 1 2

1

0

2 1 2

1

0

king norms on both sides:

|| || || || || || || ||

|| || . || || || ||

A T

k k

AT

k

k

k

V P e BR B V P d

V P BR B e d



















  

 




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-1

So, in the limit we have quadratic convergence.

Rate depends on  and on how stable  is.

When  is far from , we find linear convergence.

T
k

k

BR B A

V P







            

2. Algorithm is what you would get if you applied Newton's method

   to solve ARE directly.

But, we have also shown the need for stability of  and

       monotonicity.

3.   is th

 

e

 

  

 stead

kA

P



1

y state solution of the Ricatti differential equation

      

       with (0) arbitary PSD

TP PA AP Q PBR B P

P


   



Quadratic Convergence - 2
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*

3

4.    -   is not just the optimal linear c ontrol law. It is the optimal 

    control  control law linear or nonli near.

5.  Scheme requires  10 iterations

250  operations us

 

ing iter

 

at

u L x

n









           

            

3

ive Lyapunov

150  operations using 

6.  Note that the Lyapunov equation must be solved to a greater accuracy.

If we want to

Bartels-Stewart algorithm

 solve the Lyapunov equation

n





            
-4

k

 for  to an -digit accuracy, 

         we need to solve  to ( 1)-digit accuracy.

Usually 10  on trace ( V ) is good enough convergence criterion.

k

P n

V n





P∞

t

(suggest using integration methods
..... but poor and lose PSD)

Additional Insights - 1
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 

 

*

0

1

0

 7.  If have "good" guess for  , say  (s tabilizing) pick 

 8.  If have "good" guess for  , say  , pick ,  is stable.

 9.  If the process stops before converg ence, have better  than whe

T

L L L L

P P L R B P

L







0

.

n started.

10.  If want to minimize lim  ( ) ( )

           for the linear stochastic system: 

                 

           where  is zero mean white Gaussian noise v

T
T T T T

T
J x Qx u Ru dt E x Qx u Ru

x Ax Bu Ew

w


   

  



             

*

ector with 

           covariance matrix .

Then the cost can be rewritten as:

             { } and tr( )
T T T

W

J E x Qx u Ru J PEWE



  

Additional Insights - 2
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  Again same control law.

  This is the so certainty equivalence(CEcalled  prop .) erty





 One unanswered question: How to pick L0?



†

0 0
0

1/2

1/2

1/2 1

0
0

  We know from Lecture 3 that

           [ ]    stabilizes -

   Replace 

   Since   0,   always exists
†

          [ ]

    

T T

T T

T
T A T A T A AT

T
T A T A T A AT

L B e e BB e d e A BL

B B BR

R R

L R B e e BR B e d e

 

 









 



 

  

 

 
-1/2

0

1 1

0
0

0

  stabilizes -

†
      or 

      stabilizes -  0

T T TT
T A T A T A A T

A BR L

L R B e e BR B e d e

A BL R

    
   

 

How to Pick Initial Gains? - 1 
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• Note that L0 stabilizes A and is of the form L0 = R-1BTV-1, where 

 The computation of  V-1 proceeds as follows:

1.Compute

2.Factor W = ΓΓT ; Γ = n  p ; p = rank W

3.Compute Γ†.   W † = (Γ†)T Γ†

4. Z = Γ†e AT; V-1 = ZTZ

†
1

1
0

T TT
A T A T A ATV e e BR B e d e  


 
  

1

0
( ) Lecture 3

TT
A T Ae BR B e d W T    

How to Pick Initial Gains? - 2 
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 Note that in theory T is arbitrary.  But, in practice, try to pick T ∍ V-1

is close to P … an open problem.

• Usually, the following choices work:

1. T = 1

2. T = 2/||A|| ≈ 2/|max(A)|

3.

• For 3),  

1

1 1

1 1

1

1 1

how to get ( )?

assume  has an inverse.

Note that 

    ( ) ( )

take ( ) to obtain:

    ( ) (( ) )

T

T
T

T T T

T

T
T

tr A

BR B S

A S A A PS S A SP

A S A PA A P PSP A S A Q

tr A S A

tr AA S tr AA QS S



 

 



 



  

     

 

2/ | ( ) | 2 / | ( ) |avgT A n tr A 

How to Pick Initial Gains? - 3 
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2

1

avg

-1 0

  Use

      ( ) as an estimate of ( ) ,

      where { } are singular values of .

  further use 

1
      ( )  as an estimate of | ( ) |

2
     

( )

   If  or  fail

n
TT

i

i

i

T

T

tr AA QS tr AA

A

tr AA QS A
n

n
T

tr AA QS

V L









 



 






s to stabilize, double  and continue the processT

How to Pick Initial Gains? - 4 
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 Infinite Horizon Discrete LQ regulator problem

 Problem

• Consider a discrete-time system:

xi+1 = xi + Bui

• Find a linear feedback control law ui = -Lxi to minimize

 We can develop an algorithm in parallel to the continuous case.

• Suppose have gain Lk, then 

Jk = x0
TVk x0

where Vk satisfied the algebraic Riccati equation:

    

where  stable

T T
T

k kk k k k

k k

V V A Q L RL

BL

    

 

0

[ ]T T

i i i i

i

J x Qx u Ru




 

Discrete ARE (DARE)
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 LQR Results: optimal control 

(some times written as -L xi ), where P is the unique PD

solution of the discrete ARE

* 1( )T T

i iu R B PB B P x   

1

1

1

1 1

( )

( )

T T

k k k k k k

T T

k k k

k k k

V V Q L RL

L R B V B B V

BL I SV







 

    

  

    

1

1

1 1 1

[ ( ) ]

( )

( ) where 

T T T

T

T T

P P PB R B PB B P Q

P I SP Q

P S Q S BR B





  

    

   

    

 Iterative algorithm

Pick L0 ∋0 is stable

Do for k=0,1,2,…

solve 

check for convergence:

If tr(Vk) ≤ TOL.tr(Vk)

stop.  obtained P=Vk and L*=Lk+1

end if

end Do

Newton’s Mathod for DARE
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 Properties much the same as in the continuous case

• Quadratic convergence

• Takes ~ 10 iterations

• J(u*) = x0 
T Px0.

• Also, P is the steady state solution of the difference Riccati equation

Pi+1=
T [Pi-Pi B(R+BT Pi B)-1BTPi]+Q

where [Pi-Pi B(R+BT Pi B)-1BTPi] is the update

• Recall that this is similar to the update – propagate equation of 

Kalman filter with the associations:

–  → T

– B → CT

Algorithmic Properties - 1



Copyright ©2008 by K. Pattipati 17

1 1

T T T

k k k k k k k k k kV V Q L RL V SV      

†
1

1

0

( ) ( )
M

T M k T k M

i

V S






 
     

 


 If we are only interested in P = TP(I+SP)-1+Q, use

wherek=(I+SVk-1)
-1

and where V-1 is picked ∋0 is stable.

 Initialization (Kleinman, IEEE Trans. On AC, June 1974)

• M n (power of 2) arbitrary

• L0 =(R+BTV-1B)-1BTV-1

Algorithmic Properties - 2
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 Consider the continuous time ARE

ATP+PA+Q-PSP=0 ;  S=BR-1BT

We can show that

 These are the so-called two-point boundary value problem (TPBVP) 

equations

• Then p(t)=P(t) x(t), where P(t) satisfies the Riccati differential 

equation



• The matrix                                 is called the Hamiltonian

Schur Method for solving ARE

T

A S
Z

Q A

 
  

  

( ) ( )
 with (0) (0) (0);  ( )

( ) ( )T

x t x tA S
p P x p t costate

p t p tQ A

    
           





•

       TP A P PA Q PSP   
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 Note tr (Z) = 0  Eigen values are symmetrically disposed 

around the origin

• Indeed if λi (Z) is an Eigen value of Z, so is –λi (Z)

• Furthermore, same multiplicity

Hamiltonian Properties - 1

0
where   

0

0 0 0

0 0 0

T T

T T

T

T

T T

J Z J Z

I
J

I

J ZJ Z

I A S I I S A A Q
Z

I Q A I I A Q S A

 

 
  

 

 

             
             

              
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 Suppose          is an Eigen vector of Z for λi

a

b

 
 
 

    i i

Then,  

Note that

         

So,  is also an eigen value of 

since ,

i

i TT

i

TT

i

i

i

T

T

i i

Aa Sb aA S a a

Qa A b bQ A b b

b b A b Qa bA Q

a a Sb Aa aS A

b
Z

a

Z Z











   

     
     

       

         
      

        

 
 
 

    are eigen values of .Z

Hamiltonian Properties - 2
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Schur Method for Solving ARE

 Find an orthogonal transformation Q (2n X 2n)

 Moreover, it is possible to arrange such that the real parts 

of the spectrum of        are negative, while those of        are 

positive

 Write Q such that it is conformal with Z.  

11 12

22

,  where  is an upper Schur form (real)
0

T Z Z
Q ZQ Z Z

Z

 
   

 

 
 



11Z 22Z

11 12

21 22

Q Q
Q

Q Q

 
  
 
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Theory Behind Schur Method - 1

 Theorem:

1. Q11 is invertible

2. P

3.

 Proof:

1

21 11 , and  is symmetric PD matrixQ Q P

     *

11  eigen values of 

the closed loop system

i i iZ A BL A SP      

-1

11 11 11 11

11

21 21 21 21

Let  be

0
           ,   can be complex

0

            but,  diagonal matrix with postive real parts

then,        and    

T

T ZT

T T Q Q
Z Z Z

T T Q Q

 
  

 

 

       
          

       


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 Proof (contd.) : 

 Theorem: (Potter, 1963) solves Riccati equation

 Proof:  

-1

11

11 11 11-1

11

21 21 21

11 11

21 21

11 11

21 2

                              Let 

         (2)

T
D, where D is a diagonal matrix with 1's

T

T
    

T

Z

Q Q Q
Z Z

Q Q Q

Q

Q

Q

Q

   

     
            

     

   
      

   

 
 

 





-1

1

-1 -1

21 11 21 11

D

Since T T  solves Ricatti equation, so does . Why ?Q Q

 
 

 

-1

21 11T T

Let  = closed-loop matrix.

then ( )

Let U be the set of Eigen vectors of .

T

G A SP

PG Q A P

A A SP

 

  

 

Theory Behind Schur Method - 2



Copyright ©2008 by K. Pattipati 26

-1      Then               (1)

                ( )                            (2)

      Let     (3)

      Also,                 (4)

      From (3) 
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and (4), we have

      

      are the eigen vectors of  corresponding to 
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Theory Behind Schur Method - 2Why Schur & NOT Potter’s Method?

 Computing via Eigen vector method is bad because the Eigen vector

computation leads to numerical instabilities

 However, Schur method is OK because Q is orthogonal

 So, solve

 Computational Load 

• Transform Z  upper Hessenberg: 5 (2n)3/3

• Upper Hessenberg  Upper Schur = 4  (2n)3=  48n3; 1.5

• Solution

 So, total computational load = 63 n3

 1/3 to ¼ of the iterative method

11 21  via  decompositionPQ Q LU

11 21  T TQ P Q

3

11 21  via  decomposition 4 / 3PQ Q LU n 
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Summary

 Continuous-time Linear Quadratic Regulator (LQR) problem

 Kleinman’s algorithm for the Algebraic Riccati Equation (ARE)

- properties 

 Discrete-time LQR problem

 Schur method for solving the ARE


