

Copyright ©2008 by K. Pattipati

Outline of Lecture 14

- Continuous-time Linear Quadratic Regulator (LQR) problem
- Kleinman's algorithm for the Algebraic Riccati Equation (ARE)
 properties
- Discrete-time LQR problem
- □ Schur method for solving the ARE

Infinite Horizon Continuous time LQR problem

- Problem
 - Consider a linear time-invariant system:

 $\dot{x} = Ax + Bu; x(0) = x_0$

- Want to find an optimal linear control law:

 $\underline{u} = -L\underline{x} \underbrace{\Rightarrow} \int_{0}^{\infty} [\underline{x}^{T} Q \underline{x} + \underline{u}^{T} R \underline{u}] dt = J(u) \text{ is a minimum}$

• Pick any gain $L_0 \ni A - BL_0 = \overline{A}_0$ is stable ... will come back to the problem of picking L_0 later.

Recall that $J_0 = \underline{x}_0^T V_0 \underline{x}_0$ where V_0 satisfies the Lyapunov equation $0 = \overline{A}_0^T V_0 + V_0 \overline{A}_0 + Q + L_0^T R L_0$ (1)

• Objective: want to find L^* that gives the smallest PD matrix P so that

$$J^* = \underline{X}_0^T P \underline{X}_0$$
 is a minimum.

Newton's Method for ARE - 1

- We seek an iterative process: $L_0 \rightarrow L_1 \rightarrow ... \rightarrow L_k \rightarrow ... \rightarrow L^*$ - Find L_1 next that is better than L_0 , that is, $0 = \overline{A}_1^T V_1 + V_1 A_1 + Q + L_1^T R L_1$ (2)
 - Note that

$$\overline{A}_0 = A - BL_0 = A - BL_1 + B(L_1 - L_0) = \overline{A}_1 - B\delta L; where \,\delta L = (L_0 - L_1)$$
- Eq. (1) can be written in terms of \overline{A}_1 as:

$$0 = \overline{A}_1^T V_0 + V_0 \overline{A}_1 - \delta L^T B^T V_0 - V_0 B\delta L + Q + L_0^T RL_0$$

- subtract Eq. (2) from Eq. (1), that is (1)-(2), to obtain:

$$0 = \overline{A}_1^T \delta V + \delta V \overline{A}_1 - \delta L^T B^T V_0 - V_0 B \delta L + L_0^T R L_0 - L_1^T R L_1; where \, \delta V = V_0 - V_1$$

- this equation can be simplified to:

$$0 = \overline{A}_{1}^{T} \delta V + \delta V \overline{A}_{1} + \delta L^{T} R \delta L - \delta L^{T} (B^{T} V_{0} - RL_{1}) - (B^{T} V_{0} - RL_{1}^{T}) \delta L$$
- so, if $L_{1} = R^{-1} B^{T} V_{0}$ then

$$0 = \overline{A}_{1}^{T} \delta V + \delta V \overline{A}_{1} + \delta L^{T} R \delta L$$

Newton's Method for ARE - 2 \Rightarrow if A_1 is stable $\delta V \ge 0 \text{ or } V_1 \le V_0$ -so, for every \underline{x}_0 , we have $\underline{x}_0^T V_0 \underline{x}_0 \ge \underline{x}_0^T V_1 \underline{x}_0$ $-but, is \overline{A}$ stable? Yes!! - from (1) $\overline{A}_{1}^{T}V_{0} + V_{0}\overline{A}_{1} - \delta L^{T}RL_{1} - L_{1}^{T}R\delta L + Q + L_{0}^{T}RL_{0} = 0$ or $\overline{A}_{1}^{T}V_{0} + V_{0}\overline{A}_{1} + \delta L^{T}R\delta L + L_{1}^{T}RL_{1} + Q = 0$ can also see this form $V_0 = V_1 + \delta V$. Thus, \overline{A}_1 is stable by Lyapunov theorem, if A_0 does. - Continuing the iterative process with $L_{k+1} = R^{-1}B^T V_k, k = 0, 1, 2, ...,$ we obtain $V_{k+1} < V_k$, k = 0, 1, 2, ...,- $\{V_k\}$ are monotonically decreasing and bounded below by zero. $\Rightarrow \lim V_k \rightarrow P \text{ exists and is PD}$

Newton's Method for ARE - 3

- consequently, $L^* = R^{-1}B^T P$ is the converged gain
- Equation for P = cost matrix associated with L^*

 $(A - BR^{-1}B^{T}P)^{T}P + P(A - BR^{-1}B^{T}P) + Q + PBR^{-1}B^{T}P = 0$ (or) $A^{T}P + PA + Q - PBR^{-1}B^{T}P = 0$

- The above Equation is called the Algebraic Ricatti equation (ARE)
- Thus, *P* is the unique PD solution of ARE
- LQR Result: The optimal control is $\underline{u} = -L^* \underline{x}$ where $L^* = R^{-1}B^T P$, where *P* is the unique PD solution of ARE. Well known result in optimal control.....Linear quadratic regulator (LQR) problem.

Kleinman's Algorithm

• Kleinman's Algorithm for ARE (Newton's Method)

pick $L_0 \ni A_0$ is stable (to be addressed later) Do for k = 0, 1, 2...solve $\overline{A}_{k}^{T}V_{k} + V_{k}\overline{A}_{k} + Q + L_{k}^{T}RL_{k} = 0$ $L_{k+1} = R^{-1}B^T V_k; \overline{A}_{k+1} = A_k - BL_{k+1}$ check for convergence if $tr \, \delta V \leq TOL.tr(V_k)$, stop, found P, L^* endif end DO

Quadratic Convergence - 1

 $P \leq V_k \forall k \quad \text{infact, can show quadratic convergence}$ $\overline{A}_k^T V_k + V_k \overline{A}_k + Q + L_k^T R L_k = 0$ $\overline{A}^{*T} P + P \overline{A}^* + Q + L^{*T} R L^* = 0$ $\overline{A}_k^T (V_k - P) + (V_k - P) \overline{A}_k + (L_k - L^*)^T R (L_k - L^*) = 0$ $\Rightarrow (V_k - P) = \int_0^\infty e^{\overline{A}_k^T \sigma} (L_k - L^*)^T R (L_k - L^*) e^{\overline{A}_k \sigma} d\sigma$

– But, know that

$$L_{k} = R^{-1}B^{T}V_{k-1} \text{ and } L^{*} = R^{-1}B^{T}P$$

$$\Rightarrow (V_{k} - P) = \int_{0}^{\infty} e^{\bar{A}_{k}^{T}\sigma} (V_{k-1} - P)^{T}BR^{-1}B^{T} (V_{k-1} - P) e^{\bar{A}_{k}\sigma}d\sigma$$

- Taking norms on both sides:

$$||V_{k} - P|| \leq \int_{0}^{\infty} ||e^{\bar{A}_{k}\sigma}||^{2} ||BR^{-1}B^{T}|| ||V_{k-1} - P||^{2} d\sigma$$
$$= ||V_{k-1} - P||^{2} . ||BR^{-1}B^{T}|| \int_{0}^{\infty} ||e^{\bar{A}_{k}\sigma}||^{2} d\sigma$$

1.

Quadratic Convergence - 2

- So, in the limit we have quadratic convergence.
- Rate depends on $||BR^{-1}B^T||$ and on how stable \overline{A}_k is.
- When V_k is far from P, we find linear convergence.
- 2. Algorithm is what you would get if you applied Newton's method to solve ARE directly.
 - But, we have also shown the need for stability of \overline{A}_k and monotonicity.
- 3. P is the steady state solution of the Ricatti differential equation

• $P = PA + AP + Q - PBR^{-1}B^T P$ with P(0) = arbitary PSD

(suggest using integration methods but poor and lose PSD)

- 4. $u = -L^* \underline{x}$ is not just the optimal linear c ontrol law. It is the optimal control \forall control law linear or nonlinear.
- 5. Scheme requires ~ 10 iterations
 - $\approx 250n^3$ operations using iterative Lyapunov
 - $\approx 150n^3$ operations using Bartels-Stewart algorithm
- 6. Note that the Lyapunov equation must be solved to a greater accuracy.
 - If we want to solve the Lyapunov equation for *P* to an *n*-digit accuracy, we need to solve V_k to (n+1)-digit accuracy.
 - Usually 10^{-4} on trace (δV_k) is good enough convergence criterion.

Ρ

Additional Insights - 2

- 7. If have "good" guess for $day day day (s \hat{L} tabilizing)$ pick $L_0 = \hat{L}$
- 8. If have "good" guess for , say , \hat{P} pick $L_0 = R^{-1}B^T\hat{P}$, is stable.
- 9. If the process stops before converg ence, have better than whe n started.
- 10. If want to minimize $\lim_{T \to \infty} \int_{0}^{t} \underline{x}^{T} Q \underline{x} + \underline{u}^{T} R \underline{u} \ dt \in E \ \underline{x}^{T} Q \underline{x} + \underline{u}^{T} R \underline{u}$

for the linear stochastic system:

$$\underline{x} = A\underline{x} + B\underline{u} + E\underline{w}$$

where \underline{w} is zero mean white Gaussian noise vector with covariance matrix W.

• Then the cost can be rewritten as:

$$J = E\{\underline{x}^T Q \underline{x} + \underline{u}^T R \underline{u}\}$$
 and $J^* = tr(PEWE^T)$

How to Pick Initial Gains? - 1

- Again same control law.
- This is the so called certainty equivalence(CE) property.

One unanswered question: How to pick L_0 ?

- We know from Lecture 3 that $L_0 = B^T e^{A^T T} \left[\int_0^T e^{A\sigma} B B^T e^{A^T \sigma} d\sigma \right]^{\dagger} e^{AT} \text{ stabilizes } A - BL_0$ Replace $B \to \widetilde{B} = B R^{-1/2}$

Since
$$R > 0$$
, $R^{-1/2}$ always exists

$$L_0 = R^{-1/2} B^T e^{A^T T} [\int_0^T e^{A\sigma} B R^{-1} B^T e^{A^T \sigma} d\sigma]^{\dagger} e^{AT}$$
stabilizes $A - B R^{-1/2} L_0^0$

or
$$L_0 = R^{-1}B^T e^{A^T T} \left[\int_0^T e^{A\sigma} B R^{-1} B^T e^{A^T \sigma} d\sigma \right]^{\dagger} e^{A^T T}$$

stabilizes $A - BL_0 \forall R > 0$

How to Pick Initial Gains? - 2

• Note that L_0 stabilizes A and is of the form $L_0 = R^{-1}B^T V_{-1}$, where

$$V_{-1} = e^{A^T T} \left[\int_0^T e^{A\sigma} B R^{-1} B^T e^{A^T \sigma} d\sigma \right]^{\dagger} e^{AT}$$

The computation of V_{-1} proceeds as follows:

1. Compute $\int_{0}^{T} e^{A\sigma} BR^{-1}B^{T}e^{A^{T}\sigma}d\sigma = W(T)$Lecture 3 2. Factor $W = \Gamma\Gamma^{T}$; $\Gamma = n \times p$; p = rank W3. Compute Γ^{\dagger} . $W^{\dagger} = (\Gamma^{\dagger})^{T}\Gamma^{\dagger}$

4.
$$Z = \Gamma^{\dagger} e^{AT}; V_{-1} = Z^T Z$$

How to Pick Initial Gains? - 3

Note that in theory *T* is arbitrary. But, in practice, try to pick $T \ni V_{-1}$ is close to *P* ... an open problem.

- Usually, the following choices work:
 - 1. T = 1

2.
$$T = 2/||A|| \approx 2/|\lambda_{\max}(A)|$$

3.
$$T = 2/|\lambda_{avg}(\overline{A})| = 2n/|tr(\overline{A})|$$

• For 3), how to get
$$tr(\overline{A})$$
?

assume $BR^{-1}B^T = S$ has an inverse.

Note that

$$\overline{A}^{T}S^{-1}\overline{A} = (A^{T} - PS)S^{-1}(A - SP)$$
$$= A^{T}S^{-1}A - PA - A^{T}P + PSP = A^{T}S^{-1}A + Q$$
take $tr(\overline{A}^{T}S^{-1}\overline{A})$ to obtain:
$$tr(\overline{A}\overline{A}^{T}S^{-1}) = tr((AA^{T} + QS)S^{-1})$$

Use

$$tr(AA^{T} + QS)$$
 as an estimate of $tr(\overline{A}\overline{A}^{T}) = \sum_{i=1}^{n} \sigma_{i}^{2}$,

How to Pick Initial Gains? - 4

where $\{\sigma_i\}$ are singular values of *A* further use

$$\frac{1}{n}\sqrt{tr(AA^{T}+QS)} \text{ as an estimate of } |\lambda_{avg}(\overline{A})|$$
$$\Rightarrow T = \frac{2n}{\sqrt{tr(AA^{T}+QS)}}$$

• If V_{-1} or L_0 fails to stabilize, double T and continue the process

- Infinite Horizon Discrete LQ regulator problem Problem
 - Consider a discrete-time system:

 $\underline{x}_{i+1} = \Phi \underline{x}_i + B \underline{u}_i$

• Find a linear feedback control law $\underline{u}_i = -L\underline{x}_i$ to minimize

$$J = \sum_{i=0}^{\infty} \left[\underline{x}_i^T Q \underline{x}_i + \underline{u}_i^T R \underline{u}_i \right]$$

- We can develop an algorithm in parallel to the continuous case.
 - Suppose have gain L_k , then

$$J_k = \underline{x}_0^T V_k \underline{x}_0$$

where V_k satisfied the algebraic Riccati equation:

$$V_{k} = \overline{\Phi}_{k}^{T} V_{k} \overline{A}^{T} \overline{\Phi}_{k} + Q + L_{k}^{T} R L_{k}$$

where $\overline{\Phi}_{k} = \overline{\Phi} - B L_{k}$ stable

Newton's Mathod for DARE

LQR Results: optimal control $u_i^* = -(R + B^T P B)^{-1} B^T P \Phi x_i$ (some times written as $-L\Phi \underline{x}_i$), where P is the unique PD solution of the discrete ARE $P = \Phi^T [P - PB(R + B^T PB)^{-1}B^T P] \Phi + Q$ $=\Phi^T P(I+SP)^{-1}\Phi+O$ $= \Phi^T (P^{-1} + S)^{-1} \Phi + Q$ where $S = BR^{-1}B^T$ Iterative algorithm Pick $L_0 \ni \Phi_0$ is stable Do for *k*=0,1,2,... solve $V_{\nu} = \overline{\Phi}_{\nu}^{T} V_{\nu} \overline{\Phi}_{\nu} + Q + L_{\nu}^{T} R L_{\nu}$ $L_{k+1} = (R + B^T V_k B)^{-1} B^T V_k \Phi$ $\overline{\Phi}_{k+1} = \Phi - BL_{k+1} = (I + SV_k)^{-1}\Phi$ check for convergence: If $tr(\delta V_k) \leq TOL.tr(V_k)$ stop. obtained $P=V_k$ and $L^*=L_{k+1}$ end if end Do

Algorithmic Properties - 1

- Properties much the same as in the continuous case
 - Quadratic convergence
 - Takes ~ 10 iterations
 - $J(u^*) = \underline{x}_0^T P \underline{x}_0$.
 - Also, *P* is the steady state solution of the difference Riccati equation $P_{i+1} = \Phi^T [P_i - P_i B(R + B^T P_i B)^{-1} B^T P_i] \Phi + Q$ where $[P_i - P_i B(R + B^T P_i B)^{-1} B^T P_i]$ is the update
 - Recall that this is similar to the update propagate equation of Kalman filter with the associations:
 - $-\Phi \rightarrow \Phi^T$

 $- B \rightarrow C^T$

Schur Method for solving ARE

Consider the continuous time ARE

 $A^T P + P A + Q - P S P = 0$; $S = B R^{-1} B^T$

We can show that

$$\begin{bmatrix} \underline{\dot{x}}(t) \\ \underline{\dot{p}}(t) \end{bmatrix} = \begin{bmatrix} A & -S \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} \underline{x}(t) \\ \underline{p}(t) \end{bmatrix} \text{ with } p(0) = P(0)x(0); \ \underline{p}(t) = costate$$

□ These are the so-called two-point boundary value problem (TPBVP) equations

• Then $p(t)=P(t) \underline{x}(t)$, where P(t) satisfies the Riccati differential equation

$$P = A^T P + PA + Q - PSP$$

• The matrix
$$Z = \begin{bmatrix} A & -S \\ -Q & -A^T \end{bmatrix}$$
 is called the Hamiltonian

$$J^{T}Z^{T}J = -Z$$
where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$

$$J^{T}ZJ = -Z^{T}$$

$$\begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \begin{bmatrix} A & -S \\ -Q & -A^{T} \end{bmatrix} \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix} \begin{bmatrix} S & A \\ A^{T} & -Q \end{bmatrix} = \begin{bmatrix} -A^{T} & Q \\ S & A \end{bmatrix} = -Z^{T}$$

- Note $tr(Z) = 0 \Rightarrow$ Eigen values are symmetrically disposed around the origin
 - Indeed if $\lambda_i(Z)$ is an Eigen value of Z, so is $-\lambda_i(Z)$
 - Furthermore, same multiplicity

 $\left(\frac{a}{2}\right)$ is an Eigen vector of Z for λ_i

Then,
$$\begin{pmatrix} A & -S \\ -Q & -A^T \end{pmatrix} \begin{pmatrix} \underline{a} \\ \underline{b} \end{pmatrix} = \lambda_i \begin{pmatrix} \underline{a} \\ \underline{b} \end{pmatrix} \Rightarrow \begin{pmatrix} A\underline{a} - S\underline{b} = \lambda_i \underline{a} \\ -Q\underline{a} - A^T \underline{b} = \lambda_i \underline{b}$$

Hamiltonian Properties - 2

Note that

b

Suppose

$$\begin{pmatrix} A^{T} & -Q \\ -S & -A \end{pmatrix} \begin{pmatrix} -b \\ a \end{pmatrix} = -\lambda_{i} \begin{pmatrix} -b \\ a \end{pmatrix} \Rightarrow \frac{-A^{T} \underline{b} - Q \underline{a}}{S \underline{b} - A \underline{a}} = -\lambda_{i} \underline{a}$$

So, $\begin{pmatrix} -b \\ a \end{pmatrix}$ is also an eigen value of Z^{T}
since $\lambda_{i}(Z) = \lambda_{i}(Z^{T}) \Rightarrow \lambda_{i}, -\lambda_{i}$ are eigen values of Z.

Schur Method for Solving ARE

Find an orthogonal transformation $Q(2n \ge 2n)$

 $Q^{T}ZQ = \tilde{Z} = \begin{pmatrix} \tilde{Z}_{11} & \tilde{Z}_{12} \\ 0 & \tilde{Z}_{22} \end{pmatrix}$, where \tilde{Z} is an upper Schur form (real)

□ Moreover, it is possible to arrange such that the real parts of the spectrum of \tilde{Z}_{11} are negative, while those of \tilde{Z}_{22} are positive

CWrite*Q*such that it is conformal with*Z*.

$$Q = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix}$$

Theory Behind Schur Method - 1

Theorem:

- 1. Q_{11} is invertible
- 2. $P = Q_{21}Q_{11}^{-1}$, and P is symmetric PD matrix
- 3. $\lambda_i (Z_{11}) = \lambda_i (A BL^*) = \lambda_i (A SP) =$ eigen values of

the closed loop system

Proof:

Let T be

 $T^{-1}ZT = \begin{pmatrix} -\Lambda & 0 \\ 0 & \Lambda \end{pmatrix}, \ \Lambda \text{ can be complex}$ but, $\Lambda = \text{diagonal matrix with postive real parts}$ then, $Z\begin{pmatrix} T_{11} \\ T_{21} \end{pmatrix} = -\begin{pmatrix} T_{11} \\ T_{21} \end{pmatrix} \Lambda \text{ and } Z\begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix} = \begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix} \tilde{Z}_{11}$

Theory Behind Schur Method - 2
Proof (contd.):

$$Let \Gamma^{-1}\tilde{Z}_{11}\Gamma = -\Lambda$$

$$\Rightarrow Z\begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix}\Gamma = \begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix}\Gamma\Gamma^{-1}\tilde{Z}_{11}\Gamma = -\begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix}\Gamma\Lambda$$
 (2)

$$\Rightarrow \begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix}\Gamma = \begin{pmatrix} T_{11} \\ T_{21} \end{pmatrix}D, \text{ where D is a diagonal matrix with ± 1 's

$$\begin{pmatrix} Q_{11} \\ Q_{21} \end{pmatrix} = \begin{pmatrix} T_{11} \\ T_{21} \end{pmatrix}D\Gamma^{-1}$$
Since $T_{21}T_{11}^{-1}$ solves Ricatti equation, so does $Q_{21}Q_{11}^{-1}$. Why ?
I Theorem: (*Potter, 1963*) $T_{21}T_{11}^{-1}$ solves Riccati equation
Proof:
Let $G = A - SP = \text{closed-loop matrix.}$
then $PG = -(Q + A^T P)$
Let U be the set of Eigen vectors of $\overline{A} = A - SP$.$$

Why Schur & NOT Potter's Method?

- Computing via Eigen vector method is bad because the Eigen vector computation leads to numerical instabilities
- However, Schur method is OK because Q is orthogonal
- □ So, solve $PQ_{11} = Q_{21}$ via *LU* decomposition $Q_{11}^T P = Q_{21}^T$
 - Computational Load
 - Transform $Z \rightarrow$ upper Hessenberg: $5 (2n)^3/3$
 - Upper Hessenberg \rightarrow Upper Schur = 4 $\sigma(2n)^3$ = 48 n^3 ; σ = 1.5
 - Solution $PQ_{11} = Q_{21}$ via LU decomposition $\Rightarrow 4n^3 / 3$

 \Rightarrow So, total computational load = 63 n^3

 \Rightarrow 1/3 to ¹/₄ of the iterative method

Summary

- Continuous-time Linear Quadratic Regulator (LQR) problem
- Kleinman's algorithm for the Algebraic Riccati Equation (ARE)
 properties
- Discrete-time LQR problem
- □ Schur method for solving the ARE