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{ _ecture Outline l

» Graphical Models
» Bayesian Inference in Graphical Models
* Forward-Backward Methods of Inference

* Advanced Methods

o Summary
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{ Reading List l

* Bishop, Chapters 8 and 11

* Murphy, Chapters 19-24

* Theodiridis, Chapter 15
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[l Bayes’ Theorem l

« Basic Axioms of probability
— Probability of event A, P(A)e[0,1]
~ P(A)=1& Ais certain
— P(AUB)=P(AorB)=P(A)+P(B)-P(AB)

— Bayes’ theorem
- P(AB)=P(A|B)P(B)=P(B| A JP(A)

B|A)P(A)
P(B)

— Interested in A

p(A18)= L

— Begin with a priori probability P(A) for our belief about A d'd

— Observe B j j

— Bayes’ theorem provides the revised belief about A, that is, the 34

posterior probability P(A|B) o

L
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N & [l Causality and Inference l

— Likelihood of A: The quantity P(BJ|A), as a function of varying A for
a fixed B

— posterior e prior x likelihood
= P(A|B) e« P(A) . P(B|A)

[ N N N NSNS

We are inferring A given data B

= Graphical representation of the cause-effect process

® —®

A causes B (A is the cause and B is the effect)

= Why Graphical Structures?

0 Provide a representation for the joint distribution of a set of
variables in terms of conditional and prior probabilities

. . . . o

— Orientation of the arrows represent influence (causation) a3

— Corresponding conditional probabilities are obtained from data 44

or elicited from an expert 4 :

L
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Y- 2 ~|Bayesian Inference as Operations on a Graph

 Probabilistic (Bayesian) Inference

— When data is observed, inferencing is required

 Involves calculating marginal probabilities of causes conditioned on the
observed data using Bayes’ theorem

» Diagrammatically equivalent to reversing one or more of the arrows

®) ®
“From the observed effect B to the inferred cause A”
P(AB) = P(B) . P(A|B)

[ N N N NSNS

 Example 1

B=h|A)P(A)
P(B=b)

P(A|B=b)= P(

kL L
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BN provide a means to infer the distributions of unobserved variables based on observed ones
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o2 fl Tail-to-Tail Dependency l

* Naive Bayes
* iid observations
« prediction (sufficient statistics)

P(ABC)=P(A)P(B| A)P(C| A)

@ @ When A is not observed, B & C are dependent.
When Ais observed, B &C are conditionally independent!

« Example 2 (a)

“tail-to-tail” dependency

= “Factorization of Joint Distribution™, suppose
0 Know P(A), P(B|A) and P(C|A) BLC|A
o  ObservedB=b "B is independent of C given A"
0 Calculate P(C|B = b) why?

P(B,C) = Z P(B|A)P(C|A)P(A) = P(B)P(C)

= One way of computing it:

P(B,C|A) _P(ABC)

Calculate  P(ABC) ! ~ T RA) =P(B|A)P(C|A)

=

Copyright K.R. Pattipati, 2001-2018

2. Compute  P(B)=>>P(AB,C)=>canget P(B=b) j
A C clique clique

3. Compute p(B,C)=> P(AB,C)=cangetP(C,B=b) [p(ap.c)- PABPAC) j
A P( A)

= separator ‘

4. Calculate  p(CIB=p)= P(C,B=b)

(C|B=b) P a

|

|



Exploiting Dependency Structure

* Problem:
Need to compute |A]|B||C| entries to compute P(A,B,C)
— If|a|=|B|=|c|=10 — need 1000 entries

[ N N N NSNS

 Alternate way: Exploit the graph structure

1. Calculate P(A|B=b)= P(B;(?_Agl):’(A) using Bayes’ rule,

where P(B=b)= Z P(B=b|A)P(A) —>arc reversal or inferencing

2. Find P(C|B=b)=)P(C,A|B=b)
A

=> P(C|AB=b)P(A|B=b)

=ﬁ P(CIAP(A|B=b)

=  Advantage: Need to store only 100 entries when |A =|B|=|C|=10

kL L
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« Example 2 (b)
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Also, P(ABC) =

O—®—0

(ABC) ( ) ( | ) (C|A) A “‘separator”

fl Head-to-Tail Dependency l

“head-to-tail” dependency * Markov Chains
« HMMs

{AB}, {CA} “cliques”

P(AB)P(CA) P(AB), P(CA) are “clique potentials”

P(A) “separator potential”
P(A) (A) “sep p

When A is not observed, B & C are dependent.
When A is observed, B &C are conditionally independent!

BLC|A
"B is independent of C given A"
why?
P(B,C) = P(B)Z P(A|B)P(C|A)=P(B)P(C) 44
A od o
al
P(B,C|A)= P(AB,C) = P(A[B)P(B)P(C|A) =P(B|A)P(C|A) al
P(A) P(A) a
L
11 Copyright K.R. Pattipati, 2001-2018 AR :




o2 leead-to-Head Dependencyl

« Example 2 (c)

“head-to-head” dependency
P(ABC) = P(B) P(C) P(A| B,C)

@ G When A is not observed, B & C are independent!!
When A is observed, B & C are conditionally dependent!!

[ N N N NSNS

BLC|Y

"B is independent of C given no evidence" When A is not observed, A blocks
the path from B to C. However,

why?

when A i1s observed, it unblocks the

P(B,C) = Z P(B)P(C)P(A|B,C)=P(B)P(C) || pathfrom B to C = they become
A dependent

They are not independent given A
P(A,B,C) P(B)P(C)P(A|B,C)

P(B,C|A)=

P(A) P(A)

kL L
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: fl D-Separation l

D (dependency)-separation: ideas extend to general directed graphs
and subsets of nodes.

—  To check conditional independence of B Lc|A for subsets of nodes A, B
and C. Consider all possible paths from any node in B to any node in C .
Any such path is blocked if it includes a node

such that either

o  The arrows on the path are either tail-to-tail or head-to-tail at the
node, and the node is in the set A (observed), or

o  The arrows meet head-to-head at the node, and neither the node, nor
any of its descendents are in the set A (i.e., observed).

— If all paths are blocked, then B is d—sgjarated from C b)é A. _
B & C are not d-separated because F isnot B & C are d-separated because F is

observed (tail-to-tail) and descendent of _
head-to-head node E ie. A is observea E or its descendents are not observed.

observed (tail-to-tail) and head-to-head node

e e e = observed

Q: Whatif Aisalso

a e a e Observed?

7AW observed

Copyright K.R. Pallipati, 2001-2018

D-separation can be computed
in linear time
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fl Historical Perspective - 1 l

Formalization of ideas

Copyright K.R. Pattipati, 2001-2018

Graphical structures . . . A historical perspective from a

communication perspective

Sewall Wright (1921) . . . Developed “path analysis” as a means to

study statistical relationships in biological data

1960’s . . . Statisticians use graphs to describe restrictions in log-

linear statistical models

Gallagher (1963) . . . Error correcting codes as probabilistic graphs

Viterbi algorithm (Forney, 1973)

EEfF IO L L
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fl Historical Perspective - 2 l

o Al literature

Taxonomic hierarchies (Woods, 1975)
Medical diagnosis (Spiegelharter, 1990)

Exact algorithms for computing the joint probability distribution
(Lauritzen and Spiegelharter, 1988; Pearl, 1986)

Learning parameters in graph-based log-linear models (Hinton and
Sejnowski, 1986)

Bayesian networks (belief networks, causal networks or inference
diagrams)

0 Approximate algorithm based on Monte Carlo methods

0 Helmholtz machines
o _ See books by Frey and M.I. Jordan
0 Variational techniques Also, Bishop’s book and the book 14
; I |
/ by Koller and Freidman .
< 'd
Similar to GMM we discussed earlier :
Copyright K.R. Pattipati, 2001-2018 . . . . . :




Factor graphs
~ SupposeP (u,s,v,y)=P(u)P(s|u)P(v|su)P(yly)

[ N N N NSNS

P(u) P(s|u)
° @ o—s

N\

@4—' Factor Graphs & Markov Random Fieldsl

Show Bi-partite graph

sk Lylv

P/(yls,u)
PIv) All paths that pass from
u and s to y pass through v

Markov random fields (MRF).... Undirected graphs

16 Copyright K.R. Pattipati, 2001-2018

\ / Markov chains in higher dimensions
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Y 4 fl Hammersley-Clifford Theorem l

* Properties of MRF

— Undirected graph with nodes corresponding to variables

- P(Zi |Z\Zi): P(Zi |ni)
Z, variable
n. neighbors of variable z,

P(z) = product of clique potentials

connected if more variables are included
0 Cliques in the graphs

C,={usv} C,={v,y}
P(z)= 0‘1:[‘/’1 (Cj ) = aexp{—z‘ E; (Cj )}

Copyright K.R. Pattipati, 2001-2018

Local Markov Property
Clique-based Factorization
Global Markov Property
(D-separation)

z =setof all variables (e.g., z={u,s,V, y})

“Given its neighbors, each variable is independent of all other variables”

— Joint Distribution is given by Hammersley-Clifford Theorem (1971)

0 Clique is a fully connected sub-graph that cannot remain fully

Typical model of y,(C;)
Vi (Cj) :exp({_Ej(Cj)}
E;(C;)=energy function

NC = Number of cliques o = Normalization Constant

kL L

EEfF IO L L



FFF O DL L

18

&

[l Factor Graph Example l

« For the channel coding example

- P(Q, S, V, X): ay,(u,s,v) Wz(\_/’z)

when oc:L \/

P \_/) cliques
T separator

W= P(Q1 51\_/) and

v, =P, y)
we obtain the joint distribution

Joint distribution = product of clique potentials/Product of separator
potentials

e oL L

Copyright K.R. Pattipati, 2001-2018
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rIsing Model : Image-denoising

« Observed noisy image described by an array of binary pixel values
Y, E{_l, +1};i =1,2,.., P Variation: p(y; |x;) Gaussian
Original (hidden) image has binary pixel values

. e{-L+1},1=12,..,p

Joint distribution p(x, y) Is the Boltzmann distribution
P(X y) =aexp{-E(X,y)}

B ¥) = Zhixi 2. 2B, _Znixiyi

[ =1 jen,
%/_/ N ~ ~
to bias towards want energy to be small want energy to be small
—lor +1 when; and x; have same sign Whenx; and y; have same sign

MAP estimate via mean field (variational approximation)
p
q(x) =] [ a (X, 24); 4 = mean value of pixel i

i=1

logq; () = E_, {log(p(x, y)}+constant

EEfF IO L L
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[l Mean Field Method l

« Keep all pixels j#i at their mean values
log q; (x;) = E, [log p(Z’X)] =X [Z B —h +n, yij+C0nS tant

jem

jen,

0 (X;) oc exp(x; {{Z lBij:uj — hi}+77i Y; })

= g, (X% =1) ccexp(aq,); q; (X, = —1) c exp(-a;);a = (Z ﬂij/uj - hi]‘“ﬂ Yi

jen;

Update 44 and iterate until convergence

a a;

e i _e_ i
# =0 (X =1)—q,(x =-1) = ——— =tanh(a))
e'+¢e
« Itisusually good to low pass filter the updates (A<0.5) j j
w = A + (1) tanh(a;) Ve Vg H 3%
lteration 1 lteration 3 Iteration 15 :
20 Copyright K.R. Pattipati, 2001-2018 T11LL :



J@ : [l Directed Acyclic Graphsl

o

r

aq Bayesian Networks

: = Represented in terms of directed acyclic graphs

3
o
-
¥
¥
¥
a

21 Copyright K.R. Pattipati, 2001-2018 AR :
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@ : [l Chain Rule for Bayesian Networks l

§ « Example 1

G—&) @

D 66

— Topological order: (21 L, L, "’213)

P(z)="P(z,).P(z,12).P(z;).P(z.12,,2,) P25 2,,2,).
P(z,)-P(z;12;)-P(2, ] 24,25)-P(z 25,25 )-P(z,0).

P(le | Z8)":)(212 | Z8’ 29)'P(Zl3 | Z9’ ZlO)

e oL L
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Example 2:

Markov Blanket
of anode E is
denoted by OE.
OE = its parents,
its children, and
its children’s
other parents.

Copyright K.R. Pattipati, 2001-2018

fl Markov Blanket l

Parents of E

{A,B} = Parents of E
{D,F}=its children’s other parents

P(E|&E,C,1)=P(E|0E)
0E ={A,B,D,F,G,H}

d(E) = Descendents of E
= Children of E={G,H}

P(AB,C,D,E,F,G,H,1)=P(A)P(B)(C)P(D|A)P(E|AB)P(F|B,C)
P(G|D,E)P(H|E,F)P(1|C,F)

For an undirected graph (Markov Random Field), Markov Blanket of a node is the
set of its neighboring nodes

kL L
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[l Topological Ordering l

= Can arrange nodes in topological order

0 For each node x all of its parents pa(x) precede it in the
ordering

» Topological orders are not unique
o Order 1: {A,B,C,D,E,F,G,H,I}
o Order 2: {B,A,E,D,G,C,F,I,H}

EEfF IO L L
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: fConstructing Topological Ordering'

Algorithms for finding topological ordering

« Algorithm 1:
— Start with the graph and an empty list

— Successively delete from the graph any node which does not have any
parents, and add it to the end of the list

— Stop when no node has parent nodes

« Algorithm 2;
— Start with the graph and an empty list

— Successively delete from the graph nodes which have no children and
add them to the beginning of the list

— Stop when no node has child node

Copyright K.R. Pattipati, 2001-2018
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e Consider the out-tree structure
P(a,b,c,d,e, f,Q)
=P(a)P(b|a)P(c|a)P(d|b)P(e|b)P(f |c)P(g]c)

« Suppose you observe e and f

« Want to compute P(d|e,f)

[l Inference via Variable Elimination l

P(d|e, )= Z P(d,a,b,c,gle,f) —

a,b,c,g

Too much computation by
brute force

= P(d|b)> P(bla,e)> P(alc)} P(c.g| f)
=Y P(d|b)> P(bla,e)) P(alc)P(c]| f)

e Ordered summation: c, a, b

« What if the graph is a general directed acyclic graph (DAG)?

Copyright K.R. Pattipati, 2001-2018
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N 4 [l Variable Elimination for DAGs l

« Consider the Directed Acyclic Graph (DAG).
Want to find the marginal probability P(g) e Q
«  Steps involve sums and products e @
e Compute the product P(a,b,d) =P(a)P(b)P(d | a,b)
e Sumover b to get P(a,d) = > P(a,b,d) G
b

e Multiply P(a,d) by P(c|a) to get P(a,c,d)=P(c|a)P(a,d)

e SumP(a,c,d) overatoget P(c,d)=> P(a,c,d) 0 @

e Multiply P(c,d) by P(e|c,d) to obtain P(c,d,e) = P(e|c,d)P(c,d)
e Sumover c and d to get P(e)=> > P(c,d,e)
c d

e Multiply P(e) by P(g|e) to get P(e, g)
e Sum P(e,g) over e to get P(g) = > P(e, g)

- Complexity is exponential in the size of factors and optimal ordering of .
computations is NP-hard : :

* Is there a formal (and nicer) way to do inference in Bayesian networks? For a0
trees, there is a nice sum-product algorithm as in HMMs. For general DAGS, o
Junction tree algorithm. :
Copyright K.R. Pattipati, 2001-2018 . . . . . .



Sum-Product Algorithm using Factor Graphs

« Trees: single undirected path between each pair of nodes
Undirected Directed Polytree

[ N N N NSNS

Joint probability distribution as a product of factors
Factor graphs are

bi-partite graphs
Also, p(x) = H F. (X, X,); X, =set of all variables in the subtree connectedAo\x via s

sene(x)
Example : p(x) = f, (X, X,) T, (X, X3) o (X, %,)
For X, : p(x) = F, (X, X,, X3, X,)
[

p(Xx) = H f.(X,);s =factor; x, = subset of variables in factor s

X

= fa(xv Xz) fb (Xz’ Xs) fc(xz’ X4)
For x, : p(x) = \fa(xy Xz)j\fb(xzi Xs)“fc (X,, X4)};
Fa0g X))  R(oXy)  Fo(g.X)

Xale’xb:XS’xc:X4

s0,| ne(x;) |= number of terms involving x. in p(X)

28 Copyright K.R. Pattipati, 2001-2018
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1 Ve 2 Message Passing between Variables and Factors: Exampl
o
: « Factors —» Variables Messages (SUM)
J messages sent by a factor node to a variable node involves multiplying all the
: incoming messages (except variable node x) with the factor and summing over
N all the variables except x
s x, (%)= Z fa (X, Xz)luxz—na (X,); Hs iy, (X,) = Z fa (X, X2)lux1—>fa (%)
s s, (X,) = Z fo (X, X3)lux3—>fb (%); s o, (%) = Z f, (X, X3)1ux2—>fb (X,)
lufc—>x2 (XZ) = Z fc (XZ' X4)lux4—>fC (X4); /ufc—>x4 (X4) = Z fc (X2’ )(4)1“x2—>fc (XZ)
« Variables — Factors Messages (PRODUCT)
Message sent by a variable node to a factor node is the product of all the
iIncoming messages along all of the other links (factors)
1ux1—>fa (Xi) = 11 zux3—>fb (XB) - 1’ /ux4—>fC (X3) = 1 X X2 X3 2
luxz—)fa1 (XZ) = lufb—>x2 (XZ)quc—>x2 (XZ); j
lux2—>fb (XZ) = :ufa—>x2 (Xz)lufc—>x2 (XZ); j
H o (%) =ty ()1 (X)) R f,
29 Copyright K.R. Pattipati, 2001-2018
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« Use the node for which you want to compute
marginal probability as the root

« Factors —» Variable Messages
Marginal probability of a variable x

p(X): H ZFS(Xils): H lufs—>x(x)

sene(x) X, sene(x)

Recursively,
F(XX)_f(XXy o Xy )G(X1 sl) G (XM’ )
%,_,

ﬂf—)x(x) Z Zf (X 1101 H ZG (Xm’Xsm)

mene( f )\X X

I ag

e

Hy Xm— fs (X )

=YY ) [T 6)

mene( f,)\x
If factor s is a leaf node with only variable x, "

set IUfS_>X(X) = fS (X) Gm-[xm.sxsm.]

kL L

Messages passed along a link are always a function of the variable it is connected to

Copyright K.R. Pattipati, 2001-2018
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« Variables— Factors Messages
luxm—>fS (Xm) = Z G(XM ’lSM )
XSM

:Z H I:I(Xm’Lml)

Xom lene(xy )\ fs

= ZFI(Xm’LmI)

lene (X )\ fo X

= | :uf,—>xm (Xm)

lene(x, )\ f,

If X, Is aleaf node, , ; (X,)=1

[ N N N NSNS

» Message sent by a variable node to a factor
node is the product of all the incoming
messages along all of the other links (factors)

« On the other hand, messages sent by a factor

node to a variable node involves multiplying all
the incoming messages (except variable node x)
with the factor and summing over all the Fiy(wm, Xomi)
variables except x

31 Copyright K.R. Pattipati, 2001-2018
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Computing All Marginal Probabilities

 Select an arbitrary node as the root and propagate messages from the
leaves to the root as in the sum-product algorithm for a single root node

[ N N N NSNS

« Send messages from the root all the way back to the leaves

* Now calculate the marginal probability at each variable and factor node via

P() = J] 2 p(x) = F.(x)] | 241,

sene(Xx) x; € fg

« Can eliminate messages from variable nodes to factors via
Hiox (X)= Z Zf X Xu) T 4050 O)

mene( f;)\x

T

mene( fs)\x \ lene(x, )\ fg

* MAP problem is called the Max-sum algorithm (Viterbi for Trees)

* For DAGs and MRFs, multiple paths may exist. If you use sum-product
the usual way, it is called Loopy Belief Propagation and it works OK!

32 Copyright K.R. Pattipati, 2001-2018
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| General DAGs I

 Constructing the Inference Engine:
— Consider an artificial medical diagnosis problem

Smoker Unfit Breathless

@ & G

Family History of
Heart disease

®)
Poor diet Indigestion

©

Heart diseas

Chest pain

P(G|E,D)P(H|D,F)

Copyright K.R. Pattipati, 2001-2018

P(ABCDEFGH) =P(A)P(B)P(C)P(E|A)P(D| A,B)P(F|C)

e oL L



{Inference Problem in DAGS'

Typically, we are interested in computing the marginal
distributions conditioned on some observation of one or
more variables

« Example: what is the probability of Heart disease Given
that the patient is a smoker, is Breathless and has chest
pain?

[ N N N NSNS

PD=T|A=G=H=T) T = TRUE

How to compute inference probabilities efficiently?

EEfF IO L L
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@4—[ Kex SteES IN Inference for DAGS '

o Key steps in exact Bayesian inference

1. Add undirected edges to all co-parents which are not
currently joined (a process called marrying parents)

2. Drop all directions in the graph obtained from stage 1.
The result is the so-called moral graph.

3. Triangulate the moral graph, that is, add sufficient
additional undirected links between nodes such that there
are no cycles (i.e., closed paths) of length 4 or more
distinct nodes without a short-cut.

4. ldentify the cliques of this triangulated graph
5. Join the cliques together to form the junction tree

6. Perform inference on the junction tree (message
passing)

kL L
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p | Marrying Parents '

a

sy " Step 1: Marrying parents

L]

L]

]
o |
ol
o
a
0
L
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{Obtaining the Moral Graehl

= Step 2: Moral graph

e oL L
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N 4 | Triangulating the Moral Graehi
= Step 3: Triangulate the moral graph
It is already triangulated.
Example where triangulation is needed:
Smoking
@ Bronchitis
Tuberculos Lung cancer -> 6 @

Logical
OR node @

4]
Dyspnea @ 4 'd

X-ray (Shortness of Breath) j j
Original graph for Asia Problem Moral graph :
Copyright K.R. Pattipati, 2001-2018 iy :
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&

Triangulated Graph for the Asia Problem

P(ASTLBEXD) =P(A)P(S)P(T | A)P(L|S)P(B|S)
P(E|LT)P(X|E)P(D|B,E)

» %ﬁ
¢

Triangulated graph

Copyright K.R. Pattipati, 2001-2018
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@4—[ Cligues of the Triangulated Graeh '

= Step 4: Cliques of the triangulated graph
Cligue: a fully connected (complete) maximal subgraph

Medical Diagnosis Problem:

C,: ABD C,: ADE C;: DEG
C,: DFH C.: CF

Asia Problem:

C, AT C,: TLE C;: BLE
C,: SBL C:: DBE Cq: XE

kL L
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'| Constructing the Junction Tree '

= Step 5: Make the junction tree

Key property: running intersection property = If a
variable x Is contained in two cliques, then it is contained
In every cligue on the path connecting the two cliques.

[ N N N NSNS

The edge joining two cligues is called a separator.
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! Joint Distribution in terms of Cliques and Separators
o 5
a [IP(C)
ay KEY: _ i Mot -,
vy BEL P(ABCDEFGH) =+ Marginal representation
2 E—0) 1;[ P(Si)

6—0 _ P(ABD)P(ADE)P(DEG)P(DFH)P(CF)

N2 P(AD)P(DE)P(D)P(F)

Recall that

P(ABCDEFGH) =P(A)P(B)P(C)P(D| AB)P(E|A)P(F |C)
P(G|DE)P(H | DF)

Note that
P(C,)=P(ABD)=P(D| AB)P(A)P(B)

P(C,)=P(ADE)=P(E| AD)P(AD)=P(E| A)-P(S,)
P(C,)=P(G|DE)-P(DE)=P(G|DE).P(S,)

kL L
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Joint Distribution in terms of Cligue Potentials

P(C,) =P(H[FD)-P(S,)-P(S;)
P(Cs)=P(C|F)-P(F)=P(F|C)-P(C)

distribution. In fact,
Separator S, =C, n{C,uC, U....uC, }

Let R =C\S =C, -§ S, ={DEG}n{{ABD}U{ADE}}
= {DEG}n{ABDE}= DE
R,=G S

P(ABCDEFGH)=P(C))| | P(C;|S))

i=2

= P(Cl)J _P(Ri |Si) :HP(Ri |Si);81 =¢

i=2

= P(ABD)P(E | AD)P(G | DE)P(HF | D)P(C | F)

5
:H‘//(Ci)
i=1
This is called a potential representation of joint distribution

Copyright K.R. Pattipati, 2001-2018
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'| Non-unigueness of Junction Trees '
Junction tree IS not unique:
R, R, R, R.
S, E S, G S, HE S C
AD DE D F
hoe) % foec) o (e
C.=R C, C, C, C.
P(ABCDEFGH) = P(ABD)P(E | AD)P(G | DE)P(HF | D)P(C | F)
:H‘//(Ci)

P(C)P(F |C)

=P(A)P(B)P(D| AB) P(E|A)P(G|DE)P(H | DF)P(F)
_P(F) ] ) ;
Note that y can be any function of cliques with a suitable

normalization at the end
Example:y (C;) = ‘//(Ci)ZRi w(C)=P(R [S)P(S)=P(R;S))
P(R.S) __ w(C)
P(R. |S.) = i~/ _ \ i
(Ri]S)) PS) X w(C)

Copyright K.R. Pattipati, 2001-2018
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— can work with y(C.) directly
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One junction tree for the Asia Problem:

S,| BL
SZ 83
C2
S| BE

S6

Junction graph

Copyright K.R. Pattipati, 2001-2018

| Junction Tree for the Asia Problem I

Triangulated graph
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'| Cligues, Seearators & Potentials '

P(ASTLBEXD) = P(A)P(S)P(T | A)P(L[S)P(B|S)
P(E|LT)P(X | E)P(D|BE) Chain Rule

~ P(AT)P(TLE)P(BLE)P(SBL)P(DBE)P(XE)

B P(T)P(LE)P(BL)P(BE)P(E)

= P(AT)P(LE |T)P(B|LE)P(S|BL)

Clique Potentials/ P(D|BE)P(X |E)

Factors .
= H w(C,)
i=1

Although it looks strange, it does work!!!

= Step 6: Inference on the junction tree: sum-product algorithm
on cliques

for each node in the junction tree, store
cligue, Ri(= C\ §)), S; and yAclique)

46 Copyright K.R. Pattipati, 2001-2018
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Cligues & Separators
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: | Other Methods for Inference '

Bayesian Inference
« The junction tree approach becomes intractable for
dense graphs
« Alternate Approaches
— Probabilistic logic sampling on
» DAGS
» Junction tree
— Gibbs sampling
— Botzmann Machines
» Gibbs sampling
» Mean Field Approximation
— Lagrangian Relaxation (Variational approximation)
— Expectation Propagation

Learning BN Parameters and Structure from Data

Copyright K.R. Pattipati, 2001-2018
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NI E | Whatis a Gibbs Sameler? '

It is a Markov Chain Monte Carlo method (recall particle filter)
« Updates one variable at a time

« Samples from a conditional distribution of a variable when other
variables are fixed

* ldeally suited for Bayesian networks
Suppose you want to sample from a distribution of p variables p(xy,x,,.., X,)

e Initialize {x"}",

e Fort=12,..T _ :
" C t  Need a burn-in period

Sample X" ~ p(X, [, %, %) « Subsample to
Sample X3 ~ p(X, | X\, X,..., X}) minimize correlations

t

(t+1) (t+1) (t+1) (1)
Sample X ~ pO& [ X7 5o X s X X))

kL L
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{ summary '

» Graphical Models

» Bayesian Inference in Graphical Models

* Forward-Backwards Methods of Inference
» Simulation-based Methods

By YL L
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