
Copyright K.R. Pattipati, 2001-20181

Fall 2018

December 5, 2018

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut  
Contact: krishna@engr.uconn.edu (860) 486-2890

Lecture 13: Graphical Models

&

Bayesian Inference Networks

mailto:krishna@engr.uconn.edu


Copyright K.R. Pattipati, 2001-20182

• Graphical Models

• Bayesian Inference in Graphical Models

• Forward-Backward Methods of Inference

• Advanced Methods

• Summary

Lecture Outline
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• Bishop, Chapters 8 and 11 

• Murphy, Chapters 19-24

• Theodiridis, Chapter 15 

Reading List
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• Basic Axioms of probability

– Probability of event A,

– A is certain

–

– Bayes’ theorem

•

•

– Interested in A

– Begin with a priori probability P(A) for our belief about A

– Observe B

– Bayes’ theorem provides the revised belief about A, that is,  the 

posterior probability P(A|B)

Bayes’ Theorem 

   1 ,0AP

  1AP

         BAPBPAPBAPAUBP  or  

         APABPBPBAPABP  |  | 

 
   

 

 | 
|

P B A P A
P A B

P B




Copyright K.R. Pattipati, 2001-20186

– Likelihood of A: The quantity P(B|A), as a function of varying A for 
a fixed B

– posterior  prior  likelihood

P(A|B)  P(A) . P(B|A)

 Graphical representation of the cause-effect process

A causes B (A is the cause and B is the effect)

 Why Graphical Structures?

o Provide a representation for the joint distribution of a set of 
variables in terms of conditional and prior probabilities

– Orientation of the arrows represent influence (causation)

– Corresponding conditional probabilities are obtained from data 
or elicited from an expert

Causality and Inference 

We are inferring A given data B

A B
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• Probabilistic (Bayesian) Inference

– When data is observed, inferencing is required

• Involves calculating marginal probabilities of causes conditioned on the 

observed data using Bayes’ theorem

• Diagrammatically equivalent to reversing one or more of the arrows

“ From the observed effect B to the inferred cause A”

P(AB) =  P(B) . P(A|B)

• Example 1

Bayesian Inference as Operations on a Graph 

A B

 
   

 bBP

APAbBP
bBAP






|
|

BN provide  a means to infer the distributions of unobserved variables based on observed ones
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• Example 2 (a)

 “Factorization of Joint Distribution”, suppose

o Know P(A), P(B|A) and P(C|A)

o Observed B = b

o Calculate P(C|B = b)

 One way of computing it:

1. Calculate

2. Compute     

3. Compute

4. Calculate              

Tail-to-Tail Dependency

A

B C

       ACPABPAPABCP ||

 ABCP

    
A C

bBPCBAPBP )(get can ,,

      
A

bBCPCBAPCBP ,get can ,,,

 
 
 bBP

bBCP
bBCP






,
|

|

"  is independent of  given "

why?

( , ) ( | ) ( | ) ( ) ( ) ( )

( , , )
( , | ) ( | ) ( | )

( )

A

B C A

B C A

P B C P B A P C A P A P B P C

P A B C
P B C A P B A P C A

P A



 

 



“tail-to-tail” dependency

When A is not observed, B & C are dependent.

When A is observed, B &C are conditionally independent!

• Naïve Bayes

• iid observations

• prediction (sufficient statistics)

( , ) ( , )
( , , )

( )

clique clique

separator

P A B P A C
P A B C

P A

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• Problem:

Need to compute |A||B||C| entries to compute P(A,B,C)

– If                          need 1000 entries

• Alternate way: Exploit the graph structure

1. Calculate                                                     using Bayes’ rule,

where                                                       arc reversal or inferencing

2. Find                                                               

 Advantage: Need to store only 100 entries when                         

Exploiting Dependency Structure 

10 CBA

 
   

 bBP

APAbBP
bBAP






|
|

      
A

APAbBPbBP |

    
A

bBACPbBCP |,|

    
A

bBAPbBACP |,|

    
A

bBAPACP ||

10 CBA
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• Example 2 (b)

Head-to-Tail Dependency

AB C

       | |

( ) ( )
, ( )

( )

P ABC P B P A B P C A

P AB P CA
Also P ABC

P A





|

"  is independent of  given "

why?

( , ) ( ) ( | ) ( | ) ( ) ( )

( , , ) ( | ) ( ) ( | )
( , | ) ( | ) ( | )

( ) ( )

A

B C A

B C A

P B C P B P A B P C A P B P C

P A B C P A B P B P C A
P B C A P B A P C A

P A P A



 

  



“head-to-tail” dependency

When A is not observed, B & C are dependent.

When A is observed, B &C are conditionally independent!

{AB}, {CA} “cliques”

A “separator”

P(AB), P(CA) are “clique potentials”

P(A) “separator potential”

• Markov Chains

• HMMs
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• Example 2 (c)

Head-to-Head Dependency

A

B C

       | ,P ABC P B P C P A B C

|

"  is independent of  given no evidence"

why?

( , ) ( ) ( ) ( | , ) ( ) ( )

They are not independent given 

( , , ) ( ) ( ) ( | , )
( , | )

( ) ( )

A

B C

B C

P B C P B P C P A B C P B P C

A

P A B C P B P C P A B C
P B C A

P A P A

 

 

 



“head-to-head” dependency

When A is not observed, B & C are independent!!

When A is observed, B & C are conditionally dependent!!

When A is not observed, A blocks

the path from B to C.  However,

when A is observed, it unblocks the

path from B to C  they become

dependent
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• D (dependency)-separation:  ideas extend to general directed graphs 

and subsets of nodes.  

− To check conditional independence  of               for subsets of nodes A, B

and C.  Consider all possible paths from any node in B to any node in C .  

Any such path is blocked if it includes a node 

such that either

o The arrows on the path are either  tail-to-tail or head-to-tail at the 

node, and the node is in the set A (observed), or

o The arrows meet head-to-head at the node, and neither the node, nor 

any of its descendents are in the set A (i.e., observed).  

− If all paths are blocked, then B is d-separated from C by A.   

D-Separation

|B C A

A

B

CE

F

B & C are not d-separated because F is not 

observed (tail-to-tail) and  descendent of

head-to-head node E , i.e., A is observed. 

A

B

CE

F

observed

observed

B & C are d-separated because F is

observed (tail-to-tail) and  head-to-head node

E or its descendents are not observed. 

Q:  What if A is also 

Observed?

D-separation can be computed 

in linear time
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• Formalization of ideas

– Graphical structures . . . A historical perspective from a 

communication perspective

– Sewall Wright (1921) . . . Developed “path analysis” as a means to 

study statistical relationships in biological data

– 1960’s . . . Statisticians use graphs to describe restrictions in log-

linear statistical models

– Gallagher (1963) . . . Error correcting codes as probabilistic graphs

– Viterbi algorithm (Forney, 1973)

Historical Perspective - 1
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• AI literature

 Taxonomic hierarchies (Woods, 1975)

 Medical diagnosis (Spiegelharter, 1990)

 Exact algorithms for computing the joint probability distribution 

(Lauritzen and Spiegelharter, 1988; Pearl, 1986)

 Learning parameters in graph-based log-linear models (Hinton and 

Sejnowski, 1986)

 Bayesian networks (belief networks, causal networks or inference 

diagrams)

o Approximate algorithm based on Monte Carlo methods

o Helmholtz machines

o Variational techniques

Historical Perspective - 2

See books by Frey and M.I. Jordan

Also, Bishop’s book and the book

by Koller and Freidman

Similar to GMM we discussed earlier
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• Factor graphs

– Suppose 

• Markov random fields (MRF)…. Undirected graphs

Factor Graphs & Markov Random Fields

         , , , | | , |P u s v y P u P s u P v s u P y v

P(u)
u s

v y

P(s|u)

P(v |s,u)

P(y|v )

u s

v y

{ , } |u s y v

All paths that pass from

u and s to y pass through v

Markov chains in higher dimensions

Show Bi-partite graph
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• Properties of MRF

– Undirected graph with nodes corresponding to variables

–

variable

neighbors of variable 

= set of all variables (e.g.,                         )

“Given its neighbors, each variable is independent of all other variables”

– Joint Distribution is given by Hammersley-Clifford Theorem (1971)

= product of clique potentials

o Clique is a fully connected sub-graph that cannot remain fully 

connected if more variables are included

o Cliques in the graphs

Hammersley-Clifford Theorem

   iiii nzPzzP |\| z

iz

in iz

z },,,{ yvsuz

 zP

},,{1 vsuC  },{2 yvC 

     
11

exp{ }
NC NC

j j j j

jj

P C E C  


  z

cliques ofNumber  NC   Normalization Constant

• Local Markov Property

• Clique-based Factorization

• Global Markov Property 

(D-separation)

mod ( )

( ) exp({ ( )}

( )

j j

j j j j

j j

Typical el of C

C E C

E C energy function



  


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• For the channel coding example

–

when 

we obtain the joint distribution 

Factor Graph Example

     yvvsuyvsuP , ,, ,,, 21 

 vP

1


  and    ,,1 vsuP

 yvP ,2 

cliques

separator

Joint distribution = product of clique potentials/Product of separator 

potentials 
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• Observed noisy image described by an array of binary pixel values

• Original (hidden) image has binary pixel values 

• Joint distribution p(x, y) is the Boltzmann distribution

• MAP estimate via mean field (variational approximation)

Ising Model : Image-denoising

{ 1, 1}, 1,2,..,iy i p   

{ 1, 1}, 1,2,..,ix i p   

1

( ) ( , ); mean value of pixel 

log ( ) {log( ( , )} tan
i

p

i i i i

i

i i q

q x q x i

q x E p x y cons t

 




 

 



1 1 1

1 1

( , ) exp{ ( , )}

( , )
i

i ii j

p p p

i i ij i j i i i

i i j n i

to bias towards want energy to be smallwant energy to be small
or when x and y have same signwhen x and x have same sign

p x y E x y

E x y h x x x x y



 
   

 

 

    

Variation: p( yi |xi) Gaussian
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• Keep all pixels j≠i at their mean values

• Update i and iterate until convergence

• It is usually good to low pass filter the updates  (0.5)

Mean Field Method

log ( ) [log ( , )] tan

( ) exp( )

( 1) exp( ); ( 1) exp( );

i

i

i

i

i i q i ij j i i i

j n

i i i ij j i i i

j n

i i i i i i i ij j i i i

j n

q x E p x y x h y cons t

q x x h y

q x a q x a a h y

  

  

  









 
     

 

  
     

   

 
          

 







( 1) ( 1) tanh( )
i i

i i

a a

i i i i i ia a

e e
q x q x a

e e







      



1 (1 ) tanh( )t t t

i i ia     

Iteration 1Iteration 3 Iteration 15
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• Bayesian Networks

 Represented in terms of directed acyclic graphs



Directed Acyclic Graphs

u s

v y

         vyPusvPusPuPyvsuP |,||,,, 

 Nzzz 21 z

   kkkkk zpazaazP   of parents       |

      



N

k

kk

N

k

kk azPzpazPP
11

||z
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Chain Rule for Bayesian Networks

• Example 1

– Topological order: 

Z11 Z12 Z13

Z10Z9
Z8

Z5 Z6

Z3

Z7

Z2

Z4

Z1

 13321   zzzz 

           

         

     109139812811

10659548376

3252143121

,|. ,|. |           

. . ,|. ,|. |.            

. ,|. ,|. . |. 

zzzPzzzPzzP

zPzzzPzzzPzzPzP

zzzPzzzPzPzzPzPP z
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• Example 2:

Markov Blanket

            

     

, , , , , , , , | | , | ,

                                           | , | , | ,

P A B C D E F G H I P A P B C P D A P E A B P F B C

P G D E P H E F P I C F



A B C

D E F

G H I

Parents of E

Pa(E)

d(E)

d(E) = Descendents of E

= Children of E={G,H}

{A,B} = Parents of E

{D,F}=its children’s other parents

For an undirected graph (Markov Random Field), Markov Blanket of a node is the 

set of its neighboring nodes

Markov Blanket 

of a node E is 

denoted by  E. 

E = its parents, 

its children, and 

its children's 

other parents.

 | , , ( | )

{ , , , , , }

P E E C I P E E

E A B D F G H

  

 
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 Can arrange nodes in topological order

o For each node x all of its parents pa(x) precede it in the 

ordering

 Topological orders are not unique

o Order 1: {A,B,C,D,E,F,G,H,I}

o Order 2: {B,A,E,D,G,C,F,I,H}

Topological Ordering
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• Algorithms for finding topological ordering

• Algorithm 1:

– Start with the graph and an empty list

– Successively delete from the graph any node which does not have any 

parents, and add it to the end of the list

– Stop when no node has parent nodes

• Algorithm 2:

– Start with the graph and an empty list

– Successively delete from the graph nodes which have no children and 

add them to the beginning of the list

– Stop when no node has child node

Constructing Topological Ordering



Copyright K.R. Pattipati, 2001-201826

Inference via Variable Elimination

• Consider the out-tree structure

• Suppose you observe e and f

• Want to compute P(d|e,f)

• Ordered summation: c, a, b

• What if the graph is a general directed acyclic graph (DAG)?

a

cb

gfed

( , , , , , , )

( ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | )

P a b c d e f g

P a P b a P c a P d b P e b P f c P g c

, , ,

( | , ) ( , , , , | , )

( | ) ( | , ) ( | ) ( , | )

( | ) ( | , ) ( | ) ( | )

a b c g

b a c g

b a c

P d e f P d a b c g e f

P d b P b a e P a c P c g f

P d b P b a e P a c P c f









   

  

Too much computation by

brute force 
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Variable Elimination for DAGs

• Consider the Directed Acyclic Graph (DAG).

Want to find the marginal probability P(g)

• Steps involve sums and products

• Complexity is exponential in the size of factors and optimal ordering of 

computations is NP-hard

• Is there a formal (and nicer) way to do inference in Bayesian networks? For 

trees, there is a  nice sum-product algorithm as in HMMs.  For general DAGs, 

Junction tree algorithm.

  Compute the product ( , , ) ( ) ( ) ( | , )

  Sum over  to get ( , ) ( , , )

  Multiply ( , ) by ( | ) to get ( , , )= ( | ) ( , )

  Sum ( , , ) over  to get ( , ) ( , , )

  Multip

b

a

P a b d P a P b P d a b

b P a d P a b d

P a d P c a P a c d P c a P a d

P a c d a P c d P a c d

 

 



 







ly ( , ) by ( | , ) to obtain ( , , ) = ( | , ) ( , )

  Sum over  and  to get ( )= ( , , )

  Multiply ( ) by ( | ) to get ( , )

  Sum ( , ) over  to get ( ) = ( , )

c d

e

P c d P e c d P c d e P e c d P c d

c d P e P c d e

P e P g e P e g

P e g e P g P e g











a

c

b

gf

e

d
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Sum-Product Algorithm using Factor Graphs

• Trees: single undirected path between each pair of nodes 

( )

Joint probability distribution as a product of factors

( ) ( ); factor; subset of variables in factor

Also, ( ) ( , ); set of all variables in the subtree connected to  via 

s ss

s

s ss

s ne x

p x f x s x s

p x F x X X x s

Exa



  

 





2 2 2

1 2 2 3 2 4

1 1 2 3 4

1 2 2 3 2 4

2 1 2 2 3 2 4

( , ) ( , ) ( , )

: ( ) ( , ) ( , ) ( , )

: ( ) ( , , , )

                    ( , ) ( , ) ( , )

: ( ) ( , ) ( , ) ( , );

 

a

a a b b c c

a b c

a

X

a b c

a b c

F x X F x X F x X

mple p x f x x f x x f x x

For x p x F x x x x

f x x f x x f x x

For x p x f x x f x x f x x









1 3 4                         , ,

,| ( ) | ( )

a b c

i i

X x X x X x

so ne x number of terms involving x in p x

  



Undirected                            Directed                             Polytree

Factor graphs are

bi-partite graphs
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Message Passing between Variables and Factors: Example

• Factors  Variables Messages  (SUM)

messages sent by a factor node to a variable node involves multiplying all the 

incoming messages (except variable node x) with the factor and summing over 

all the variables except x

• Variables  Factors Messages  (PRODUCT)

Message sent by a variable node to a factor node is the product of all the 

incoming messages along all of the other links (factors)

1 3 4

2 2 2

2 2 2

2 2 2

1 3 3

2 2 2

2 2 2

2 2 2

( ) 1; ( ) 1; ( ) 1

( ) ( ) ( );

( ) ( ) ( );

( ) ( ) ( )

a b c

a b c

b a c

c a b

x f x f x f

x f f x f x

x f f x f x

x f f x f x

x x x

x x x

x x x

x x x

  

  

  

  

  

  

  

  

  







1 2 2 1

2 1

2 3 3 2

3 2

2 4 4 2

4 2

1 1 2 2 2 1 2 1

2 2 3 3 3 2 3 2

2 2 4 4 4 2 4 2

( ) ( , ) ( ); ( ) ( , ) ( )

( ) ( , ) ( ); ( ) ( , ) ( )

( ) ( , ) ( ); ( ) ( , ) (

a a a a

b b b b

c c c c

f x a x f f x a x f
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Message Passing between Factors and Variables

• Use the node for which you want to compute

marginal probability as the root

• Factors  Variable Messages
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11 1 1
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Marginal probability of a variable 
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Messages passed along a link are always a function of the variable it is connected to
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Message Passing between Variables and Factors

• Variables Factors Messages

• Message sent by a variable node to a factor 

node is the product of all the incoming 

messages along all of the other links (factors)

• On the other hand, messages sent by a factor 

node to a variable node involves multiplying all 

the incoming messages (except variable node x) 

with the factor and summing over all the 

variables except x
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Computing All Marginal Probabilities

• Select an arbitrary node as the root and propagate messages from the 

leaves to the root as in the sum-product algorithm for a single root node

• Send messages from the root all the way back to the leaves

• Now calculate the marginal probability at each variable and factor node via

• Can eliminate messages from variable nodes to factors via

• MAP problem is called the Max-sum algorithm (Viterbi for Trees)

• For DAGs and MRFs, multiple paths may exist. If you use sum-product 

the usual way, it is called Loopy Belief Propagation and it works OK!
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• Constructing the Inference Engine:

– Consider an artificial medical diagnosis problem

General DAGs

A E G

D

F

H

C

B

Smoker Unfit Breathless

Heart diseaseFamily History of 

Heart disease

Poor diet Indigestion

Chest pain

),|(),|(                               

)|(),|()|()()()()(

FDHPDEGP

CFPBADPAEPCPBPAPABCDEFGHP 
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• Typically, we are interested in computing the marginal 

distributions conditioned on some observation of one or 

more variables

• Example: what is the probability of Heart disease Given 

that the patient is a smoker, is Breathless and has chest 

pain?

Inference Problem in DAGs

TRUETTHGATDP                )|(

How to compute inference probabilities efficiently?
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• Key steps in exact Bayesian inference

1. Add undirected edges to all co-parents which are not 

currently joined (a process called marrying parents)

2. Drop all directions in the graph obtained from stage 1. 

The result is the so-called moral graph. 

3. Triangulate the moral graph, that is, add sufficient 

additional undirected links between nodes such that there 

are no cycles (i.e., closed paths) of length 4 or more 

distinct nodes without a short-cut.

4. Identify the cliques of this triangulated graph

5. Join the cliques together to form the junction tree

6. Perform inference on the junction tree (message 

passing)

Key Steps in Inference for DAGs
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 Step 1: Marrying parents

Marrying Parents

A E G

D

F

H

C

B
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 Step 2: Moral graph

Obtaining the Moral Graph

A E G

D

F

H

C

B
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 Step 3: Triangulate the moral graph

It is already triangulated.

Example where triangulation is needed:

Triangulating the Moral Graph

A

E

S

L

D

B

X

T

Logical

OR node

Lung cancer

Smoking

Bronchitis

Dyspnea

(Shortness of Breath)X-ray

Tuberculosis

Visit to Asia

Original graph for Asia Problem Moral graph

A

E

S

D

B

X

T L
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Triangulated Graph for the Asia Problem

),|()|()|(                             

)|()|()|()()()(

EBDPEXPLTEP

SBPSLPATPSPAPASTLBEXDP 

A

E

S

D

B

X

T L

Triangulated graph
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 Step 4: Cliques of the triangulated graph

Clique: a fully connected (complete) maximal subgraph

Medical Diagnosis Problem:

C1: ABD C2: ADE C3: DEG

C4: DFH C5: CF

Asia Problem:

C1: AT C2: TLE C3: BLE

C4: SBL C5: DBE C6: XE

Cliques of the Triangulated Graph

A E G

D

F

H

C

B

A

E

S

D

B

X

T L
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 Step 5: Make the junction tree

Key property: running intersection property  If a 

variable x is contained in two cliques, then it is contained 

in every clique on the path connecting the two cliques.

The edge joining two cliques is called a separator.

Constructing the Junction Tree

ABD DEGADE

CFDFH

AD DE

F

D

C1

S4

C4

S5

C5

C3C2

S2
S3
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KEY: 

Recall that

Note that

Joint Distribution in terms of Cliques and Separators 
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So, marginal representation does indeed provide the joint 

distribution.  In fact,

This is called a potential representation of joint distribution 
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Junction tree is not unique:

Note that  can be any function of cliques with a suitable

normalization at the end

Non-uniqueness of Junction Trees
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One junction tree for the Asia Problem:

Junction Tree for the Asia Problem

AT BLETLE

DBE

SBL

T LE

E

BL

C1

C4

C5

C3

C2

S2

XE

S3

BE

S4

S5

S6

C6

A

E

S

D

B

X

T L

Triangulated graph 

Junction graph
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Although it looks strange, it does work!!!

 Step 6: Inference on the junction tree: sum-product algorithm 

on cliques

for each node in the junction tree, store 

clique, Ri(= Ci\ Si), Si and (clique)

Cliques, Separators & Potentials


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Cliques & Separators

Clique Potentials/

Factors

Chain Rule
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• Bayesian Inference 

• The junction tree approach becomes intractable for

dense graphs

• Alternate Approaches

– Probabilistic logic sampling on

» DAGs

» Junction tree

– Gibbs sampling

– Botzmann Machines

» Gibbs sampling

» Mean Field Approximation

– Lagrangian Relaxation (Variational approximation)

– Expectation Propagation

• Learning BN Parameters and Structure from Data

Other Methods for Inference
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• It is a Markov Chain Monte Carlo method (recall particle filter)

• Updates one variable at a time

• Samples from a conditional distribution of a variable when other 
variables are fixed

• Ideally suited for Bayesian networks

• Suppose you want to sample from  a distribution of p variables p(x1,x2,.., xp)

6

2

What is a Gibbs Sampler?
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• Need a burn-in period

• Subsample to 

minimize correlations
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• Graphical Models

• Bayesian Inference in Graphical Models

• Forward-Backwards Methods of Inference

• Simulation-based Methods

Summary


